中考數(shù)學(xué)總復(fù)習(xí) 第六章 圖形的性質(zhì)(二)第24講 直線與圓的位置關(guān)系課件.ppt
《中考數(shù)學(xué)總復(fù)習(xí) 第六章 圖形的性質(zhì)(二)第24講 直線與圓的位置關(guān)系課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)總復(fù)習(xí) 第六章 圖形的性質(zhì)(二)第24講 直線與圓的位置關(guān)系課件.ppt(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第 24講 直線與圓的位置關(guān)系 浙江專用 直線和圓的位置關(guān)系 (1)設(shè) r是 O的半徑 , d是圓心 O到直線 l的距離 直線和 圓的位 置 圖形 公共 點(diǎn)個(gè) 數(shù) 圓心到直線的 距離 d 與半 徑 r 的關(guān)系 公共點(diǎn) 名稱 直線 名稱 相交 2 d r 交點(diǎn) 割線 相切 1 d r 切點(diǎn) 切線 相離 0 d r 無(wú) 無(wú) (2)切線的性質(zhì): 切線的性質(zhì)定理:圓的切線 ________________經(jīng)過切點(diǎn)的半徑 推論 1:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過 ___________ 推論 2:經(jīng)過圓心且垂直于切線的直線必經(jīng)過 _
2、__________ (3)切線的判定定理:經(jīng)過半徑的外端并且 _____________這條半徑的直 線是圓的切線 (4)切線長(zhǎng)定義:從圓外一點(diǎn)作圓的切線 , 把圓外這一點(diǎn)到切點(diǎn)間的 ___________的長(zhǎng)叫做切線長(zhǎng) 切線長(zhǎng)定理:過圓外一點(diǎn)所作的圓的兩條切線長(zhǎng) __________ (5)三角形的內(nèi)切圓:和三角形三邊都 __________的圓叫做三角形的內(nèi) 切圓 , 內(nèi)切圓的圓心是 ____________________________ 內(nèi)切圓的圓心叫做三角形的 ___________, 內(nèi)切圓的半徑是內(nèi)心到三邊 的距離 , 且在三角形內(nèi)部 垂直于 圓心 切點(diǎn) 垂直
3、于 線段 相等 相切 三角形三條角平分線的交點(diǎn) 內(nèi)心 1 證直線為圓的切線的兩種方法 (1)若知道直線和圓有公共點(diǎn)時(shí) , 常連結(jié)公共點(diǎn)和圓心 , 證明直線垂直半 徑; (2)不知道直線和圓有公共點(diǎn)時(shí) , 常過圓心向直線作垂線 , 證明垂線段的 長(zhǎng)等于圓的半徑 2 圓中的分類討論 圓是一種極為重要的幾何圖形 , 由于圖形位置 、 形狀及大小的不確定 , 經(jīng)常出現(xiàn)多結(jié)論情況 (1)由于點(diǎn)在圓周上的位置的不確定而分類討論; (2)由于弦所對(duì)弧的優(yōu)劣情況的不確定而分類討論; (3)由于弦的位置不確定而分類討論; (4)由于直線與圓的位置關(guān)系的不確定而分類討論 3 常
4、見的輔助線 (1)當(dāng)已知條件中有切線時(shí) , 常作過切點(diǎn)的半徑 , 利用切線的性質(zhì)定 理來解題; (2)遇到兩條相交的切線時(shí) (切線長(zhǎng) ), 常常連結(jié)切點(diǎn)和圓心、連結(jié)圓心 和圓外的一點(diǎn)、連結(jié)兩切點(diǎn) 1 (2016湘西州 )在 Rt ABC中 , C 90 , BC 3 cm, AC 4 cm , 以點(diǎn) C為圓心 , 以 2.5 cm為半徑畫圓 , 則 C與直線 AB的位置關(guān)系 是 ( ) A 相交 B 相切 C 相離 D 不能確定 2 (2016酒泉 )如圖 , AB和 O相切于點(diǎn) B, AOB 60 , 則 A 的大小為 ( ) A 15 B 30 C
5、45 D 60 A B 3 (2016湖州 )如圖 , 圓 O是 Rt ABC的外接圓 , ACB 90 , A 25 , 過點(diǎn) C作圓 O的切線 , 交 AB的延長(zhǎng)線于點(diǎn) D, 則 D的度數(shù)是 ( ) A 25 B 40 C 50 D 65 4 (2016德州 ) 九章算術(shù) 是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著 , 書 中有下列問題 “ 今有勾八步 , 股十五步 , 問勾中容圓徑幾何? ” 其意思 是: “ 今有直角三角形 , 勾 (短直角邊 )長(zhǎng)為 8步 , 股 (長(zhǎng)直角邊 )長(zhǎng)為 15步 , 問該直角三角形能容納的圓形 (內(nèi)切圓 )直徑是多少? ” ( ) A 3
6、步 B 5步 C 6步 D 8步 B C 5 ( 2 0 1 6 臺(tái)州 ) 如圖 , 在 A B C 中 , AB 10 , AC 8 , BC 6 , 以邊 AB 的中點(diǎn) O 為圓心 , 作半圓與 AC 相切 , 點(diǎn) P , Q 分別是邊 BC 和半 圓上的動(dòng)點(diǎn) , 連結(jié) PQ , 則 PQ 長(zhǎng)的最大值與最小值的和是 ( ) A 6 B 2 13 1 C 9 D. 32 3 C 判斷直線與圓的位置關(guān)系 【 例 1】 (1)如圖 , O的半徑為 4 cm, OA OB, OC AB于點(diǎn) C, OB 4, OA 2, 試說明 AB是 O的切線
7、 解: OA OB , AB OA 2 OB 2 ( 2 5 ) 2 ( 4 5 ) 2 10. 又 S AOB 1 2 AB OC 1 2 OA OB , OC OA OB AB 2 5 4 5 10 4. 又 O 的半徑為 4 , AB 是 O 的切線 (2)如圖 , 已知在 OAB中 , OA OB 13, AB 24, O的半徑長(zhǎng)為 r 5.判斷直線 AB與 O的位置關(guān)系 , 并說明理由 解:直線 AB 與 O 相切理由:過點(diǎn) O 作 OC AB 于 C ( 圖略 ) OA OB 13 , AC BC 1 2
8、AB 12. 在 Rt AOC 中 , OC OA 2 AC 2 13 2 12 2 5 r , 直線 AB 與 O 相切 【 點(diǎn)評(píng) 】 在判定直線與圓相切時(shí) , 若直線與圓的公共點(diǎn)已知 , 證題 方法是 “ 連半徑 , 證垂直 ” ;若直線與圓的公共點(diǎn)未知 , 證題方法是 “ 作垂線 , 證半徑 ” 這兩種情況可概括為一句話: “ 有交點(diǎn)連半徑 , 無(wú)交點(diǎn)作垂線 ” 對(duì)應(yīng)訓(xùn)練 1 (1)(2015齊齊哈爾 )如圖 , 兩個(gè)同心圓 , 大圓的半徑為 5, 小圓的半 徑為 3, 若大圓的弦 AB與小圓有公共點(diǎn) , 則弦 AB的取值范圍是 ( ) A 8AB10
9、B 8 AB10 C 4AB5 D 4 AB5 A (2)(2016永州 )如圖 , 給定一個(gè)半徑長(zhǎng)為 2的圓 , 圓心 O到水平直線 l的 距離為 d, 即 OM d.我們把圓上到直線 l的距離等于 1的點(diǎn)的個(gè)數(shù)記為 m. 如 d 0時(shí) , l為經(jīng)過圓心 O的一條直線 , 此時(shí)圓上有四個(gè)到直線 l的距離 等于 1的點(diǎn) , 即 m 4, 由此可知:當(dāng) d 3時(shí) , m ____;當(dāng) m 2時(shí) , d的取值范圍是 ______________ 1 1 d 3 圓的切線的性質(zhì) 【例 2 】 ( 2 0 1 6 天津 ) 在 O 中 , AB 為直徑 , C 為 O 上一點(diǎn) ( 1 )
10、 如圖 , 過點(diǎn) C 作 O 的切線 , 與 AB 的延長(zhǎng)線相交于點(diǎn) P , 若 C A B 27 , 求 P 的大??; ( 2 ) 如圖 , D 為 AC 上一點(diǎn) , 且 OD 經(jīng)過 AC 的中點(diǎn) E , 連結(jié) DC 并延長(zhǎng) , 與 AB 的延長(zhǎng)線相交于點(diǎn) P , 若 C A B 10 , 求 P 的大小 解: ( 1 ) 如圖 , 連結(jié) OC , O 與 PC 相切于點(diǎn) C , OC PC , 即 OC P 90 , C A B 27 , C OB 2 C A B 54 , 在 Rt C OP 中 , P C OP 90
11、 , P 90 C OP 36 ; ( 2 ) E 為 AC 的中點(diǎn) , OD AC , 即 A EO 90 , 在 Rt A OE 中 , 由 E A O 10 , 得 A OE 90 E A O 80 , AC D 1 2 A OD 40 , AC D 是 AC P 的一個(gè)外角 , P AC D A 40 10 30 . 【 點(diǎn)評(píng) 】 本題主要考查了切線的性質(zhì)和應(yīng)用 , 要熟練掌握切線的性 質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑經(jīng)過圓心且垂直于切線的 直線必經(jīng)過切點(diǎn)經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心 對(duì)應(yīng)
12、訓(xùn)練 2 (2016丹東 )如圖 , AB是 O的直徑 , 點(diǎn) C在 AB的延長(zhǎng)線上 , CD與 O相切于點(diǎn) D, CE AD, 交 AD的延長(zhǎng)線于點(diǎn) E. (1)求證: BDC A; (2)若 CE 4, DE 2, 求 AD的長(zhǎng) ( 1 ) 證明:如圖 , 連結(jié) OD , CD 是 O 的切線 , ODC 90 , 即 ODB B DC 90 , AB 為 O 的直徑 , ADB 90 , 即 ODB A DO 90 , B DC ADO , OA OD , ADO A , B DC A ; ( 2 ) 解:
13、CE AE , E A DB 90 , DB EC , D C E B DC , B D C A , A DC E , E E , A EC C ED , CE DE AE CE , EC 2 DE A E , 16 2 ( 2 A D) , A D 6. 切線的判定與性質(zhì)的綜合運(yùn)用 【 例 3】 (2016永州 )如圖 , ABC是 O的內(nèi)接三角形 , AB為直徑 , 過點(diǎn) B的切線與 AC的延長(zhǎng)線交于點(diǎn) D, E是 BD中點(diǎn) , 連結(jié) CE. (1)求證: CE是 O的切線; (2)若 AC 4, BC 2, 求
14、BD和 CE的長(zhǎng) ( 1 ) 證明:連結(jié) OC , 如圖所示 , BD 是 O 的切線 , C B E A , A B D 90 , AB 是 O 的直徑 , AC B 90 , A C O B C O 90 , BCD 90 , E 是 BD 中點(diǎn) , CE 1 2 BD BE , B C E C B E A , OA OC , AC O A , A C O B C E , B C E B C O 90 , 即 OC E 90 , CE OC , CE 是 O 的切線; ( 2 ) 解:
15、 AC B 90 , AB AC 2 BC 2 4 2 2 2 2 5 , ta n A BD AB BC AC 2 4 1 2 , BD 1 2 AB 5 , CE 1 2 BD 5 2 . 【 點(diǎn)評(píng) 】 本題考查了切線的判定與性質(zhì) , 解題的關(guān)鍵是:熟記切線 的判定定理與性質(zhì)定理:經(jīng)過半徑的外端 , 并且垂直于這條半徑的直 線是圓的切線;圓的切線垂直于過切點(diǎn)的直徑 對(duì)應(yīng)訓(xùn)練 3 ( 2 0 1 6 衢州 ) 如圖 , AB 為 O 的直徑 , 弦 CD AB , 垂足為點(diǎn) P , 直 線 BF 與 AD 的延長(zhǎng)線交 于點(diǎn) F , 且
16、 AF B A B C . ( 1 ) 求證:直線 BF 是 O 的切線; ( 2 ) 若 CD 2 3 , OP 1 , 求線段 BF 的長(zhǎng) ( 1 ) 證明: A FB A B C , A B C ADC , A F B ADC , CD BF , A P D A B F , CD AB , AB BF , 直線 BF 是 O 的切線 ( 2 ) 解:連結(jié) OD ( 圖略 ) , CD AB , PD 1 2 CD 3 , OP 1 , OD 2 , OA 2 , AP OA OP 3 , AB 4
17、 , P A D B A F , A P D A B F , A P D A B F , AP AB PD BF , 3 4 3 BF , BF 4 3 3 . 試題 如圖 , P 是 O 外一點(diǎn) , PA 切 O 于點(diǎn) A , AB 是 O 的直徑 , BC OP 交 O 于點(diǎn) C. ( 1 ) 判斷直線 PC 與 O 的位置關(guān)系 , 并證明你的結(jié)論; ( 2 ) 若 BC 2 , s in 1 2 A P C 1 3 , 求 PC 的長(zhǎng)及點(diǎn) C 到 PA 的距離 審題視角 ( 1 ) 直線 PC 與 O 交于點(diǎn) C , 可以初步判定
18、直線與圓相切或相交; ( 2 ) P A 切 O 于點(diǎn) A , 根據(jù)切線的性質(zhì) , 可知 P A O 90 , 連結(jié) CO , 能 證得 P C O P A O 90 , PC 與 O 相 切;而后由 PC 是切線解得 PC 長(zhǎng) 規(guī)范答題 解: (1)直線 PC與 O相切 證明:如圖 , 連結(jié) OC, BC OP, 1 2, 3 4. OB OC, 1 3, 2 4. 又 OC OA, OP OP, POC POA(SAS), PCO PAO. PA切 O于點(diǎn) A, PAO 90 , PCO 90 , PC與
19、O相切 ( 2 ) P OC P OA , 5 6 1 2 A P C , s in 5 s in 1 2 A P C 1 3 . P C O 90 , 2 5 90 , co s 2 s in 5 1 3 . 3 1 2 , co s 3 1 3 . 如圖 , 連結(jié) AC , AB 是 O 的直徑 , AC B 90 , AB BC co s 3 2 1 3 6 , OA OB OC 3 , AC AB 2 BC 2 4 2 , 在 Rt P OC 中 , OP OC
20、 s in 5 9 , PC OP 2 OC 2 6 2 . 如圖 , 過點(diǎn) C 作 CD PA 于 D , AC B P A O 90 , 3 7 90 , 7 8 90 , 3 8 , co s 8 co s 3 1 3 . 在 Rt C A D 中 , AD AC co s 8 4 2 1 3 4 3 2 . CD AC 2 AD 2 16 3 , 即點(diǎn) C 到 PA 的距離為 16 3 . 答題思路 第一步:探索可能的結(jié)論 , 假設(shè)符合要求的結(jié)論存在; 第二步:從條件出發(fā) (即假設(shè) )求解
21、; 第三步:確定符合要求的結(jié)論存在或不存在; 第四步:給出明確結(jié)果; 第五步:反思回顧 , 查看關(guān)鍵點(diǎn) , 易錯(cuò)點(diǎn)及答題 規(guī)范 試題 在 Rt A B C 中 , C 90 , AC 3 , BC 4 , 若以 C 為圓心 , R 為半徑的圓與斜邊 AB 只有一個(gè)公共點(diǎn) , 求 R 的值 錯(cuò)解 解: C 與 AB 只有一個(gè)公共點(diǎn) , C 與 AB 相切 , 如圖 , AB 3 2 4 2 5 , S A BC 1 2 A B C D 1 2 A C B C , CD AC B C AB 3 4 5 12 5 , 圓與 AB 相切時(shí) ,
22、即 R CD 12 5 . 剖析 當(dāng) C 與 AB 相切時(shí) , 只有一個(gè)交點(diǎn) , 同時(shí)要注意 AB 是線段 , 當(dāng) 圓的半徑 R 在一定范圍內(nèi)時(shí) , 斜邊 AB 與 C 相交且只有一個(gè)公共點(diǎn) 正解 當(dāng) O 與 AB 相切時(shí) , 圓與 AB 只有一個(gè)公共點(diǎn) , 如圖 , AB 3 2 4 2 5 , S A BC 1 2 A B C D 1 2 AC B C , CD AC B C AB 3 4 5 12 5 ; 當(dāng) C 與斜邊 AB 相交時(shí) , 點(diǎn) A 在圓內(nèi)部 , 點(diǎn) B 在圓上或圓外時(shí) , 圓與 AB 只有一個(gè)公共點(diǎn) , 如圖 , 此時(shí) AC R BC , 即 3 R 4. 故答案為: 3 R 4 或 R 12 5 .
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 財(cái)務(wù)管理第六講 營(yíng)運(yùn)資金管理
- 地圖上的方向
- 地形和表示地形的地圖
- 1讓我們蕩起雙槳講解
- 北師大版二下《美麗的植物園》
- 第六章裝飾裝修工程事故分析與處理
- 審方藥師與藥學(xué)診斷-反沖力課件
- 學(xué)生公寓宿舍設(shè)計(jì)規(guī)劃
- 品質(zhì)管理基礎(chǔ)知識(shí)培訓(xùn)課件
- 自行車上的簡(jiǎn)單機(jī)械
- 會(huì)計(jì)準(zhǔn)則與會(huì)計(jì)規(guī)范
- 美國(guó)大熔爐_英語(yǔ)學(xué)習(xí)_外語(yǔ)學(xué)習(xí)_教育專區(qū)課件
- 手機(jī)證券精準(zhǔn)營(yíng)銷方案
- 第六章績(jī)效管理概述
- 課題3制取氧氣