全自動(dòng)顆粒包裝機(jī)設(shè)計(jì)
全自動(dòng)顆粒包裝機(jī)設(shè)計(jì),全自動(dòng),顆粒,裝機(jī),設(shè)計(jì)
工業(yè)機(jī)器人在顆粒包裝機(jī)中的應(yīng)用
摘要:機(jī)械手是機(jī)器人的手臂,它使機(jī)器人能彎屈、延伸和旋轉(zhuǎn),提供這些運(yùn)動(dòng)的是機(jī)械手的軸,亦是所謂的機(jī)械人的自由度機(jī)械手的軸使機(jī)械手在某一區(qū)域內(nèi)執(zhí)行任務(wù),我們將這個(gè)區(qū)域?yàn)闄C(jī)器人的工作單元,該區(qū)域的大小與機(jī)械手的尺寸相對(duì)應(yīng),。由鏈、齒輪和滾珠絲杠組成的機(jī)械傳動(dòng)鏈驅(qū)動(dòng)著機(jī)器人的各軸。
機(jī)器人控制器是工作單元的核心。用于大多數(shù)機(jī)器人系統(tǒng)中的控制器代表現(xiàn)代電子學(xué)的水平,是更復(fù)雜的裝置,即它們可以使得微處理器操縱的。動(dòng)力源是給機(jī)器人和機(jī)械手提供動(dòng)力的單元。例如,如果機(jī)器人的機(jī)械手是由液壓和氣壓驅(qū)動(dòng)的,控制信號(hào)便傳送到這些裝置。
關(guān)鍵詞:工業(yè)機(jī)器人,包裝機(jī)
工業(yè)機(jī)器人是在生產(chǎn)環(huán)境中用以提高生產(chǎn)效率的工具,它能做常規(guī)乏味的裝配線(xiàn)工作,或能做那些對(duì)于工人說(shuō)是危險(xiǎn)的工作,例如,第一代工業(yè)機(jī)器人是用來(lái)在核電站中更換核燃料棒,如果人去做這項(xiàng)工作,將會(huì)遭受有害放射線(xiàn)的輻射。工業(yè)機(jī)器人亦能工作在裝配線(xiàn)上將小元件裝配到一起,如將電子元件安放在電路印制板,這樣,工人就能從這項(xiàng)乏味的常規(guī)工作中解放出來(lái)。機(jī)器人也能按程序要求用來(lái)拆除炸彈,輔助殘疾人,在社會(huì)的很多應(yīng)用場(chǎng)合下履行職能。
機(jī)器人可以認(rèn)為是將手臂末端的工具、傳感器和手爪移到程序指定位置的一種機(jī)器。當(dāng)機(jī)器人到達(dá)位置后,它將執(zhí)行某種任務(wù)。這些任務(wù)可以是焊接、密封、機(jī)器裝料、拆卸以及裝配工作。除了編程以及系統(tǒng)的開(kāi)停之外,一般來(lái)說(shuō)這些工作可以在無(wú)人干預(yù)下完成。
如下敘述的是機(jī)器人系統(tǒng)基本術(shù)語(yǔ):
1。機(jī)器人是一個(gè)可編程、多功能的機(jī)器手,通過(guò)給要完成的不同任務(wù)編制各種動(dòng)作,它可以移動(dòng)零件、材料、工具以及特殊裝置。這個(gè)基本定義引導(dǎo)出后續(xù)斷落的其他定義,從而描繪出一個(gè)完整的機(jī)器人系統(tǒng)。
2。預(yù)編程位置點(diǎn)是機(jī)器人為完成工作而必須跟蹤的軌跡。在某些位置點(diǎn)上機(jī)器人將停下來(lái)做某些操作,如裝配零件、噴涂油漆或焊接。這些預(yù)編程點(diǎn)貯存再機(jī)器人的貯存器中,并為后續(xù)的連續(xù)操作所調(diào)用,而且這些預(yù)編程點(diǎn)像其他程序數(shù)據(jù)一樣,可在日后隨工作需要而變化。因而,這正是這種可編程序的特點(diǎn),一個(gè)工業(yè)機(jī)器人很像一臺(tái)計(jì)算機(jī),數(shù)據(jù)可在這里儲(chǔ)存、后續(xù)調(diào)用與編輯。
3。機(jī)械手是機(jī)器人的手臂,它使機(jī)器人能彎屈、延伸和旋轉(zhuǎn),提供這些運(yùn)動(dòng)的是機(jī)械手的軸,亦是所謂的機(jī)械人的自由度。一個(gè)機(jī)械人能有3~16軸,自由度一詞總是與機(jī)器人軸數(shù)相關(guān)。
4。工具和手爪不是機(jī)器人自身組成部分,但它們是安裝再機(jī)器人手臂末端的附件。這些連在機(jī)器人手臂末端的附件可使機(jī)器人抬起工件、點(diǎn)焊、刷漆、電弧焊、鉆孔、打毛刺以及根據(jù)機(jī)器人的要求去做各種各樣的工作。
5。機(jī)器人系統(tǒng)還可以控制機(jī)器人的工作單元,工作單元是機(jī)器人執(zhí)行任務(wù)所處的整體環(huán)境,該單元包括控制器、機(jī)械手、工作平臺(tái)、安全保護(hù)裝置或者傳輸裝置。所有這些為保證機(jī)器人完成自己任務(wù)而必須的裝置都包括在這一工作單元中。另外,來(lái)自外設(shè)的信號(hào)與機(jī)器人通訊,通知機(jī)器人何時(shí)裝配工件、取工件或放工件到傳輸裝置上。
機(jī)器人系統(tǒng)有三個(gè)基本部件:機(jī)械手、控制器和動(dòng)力源。?
A.機(jī)械手
機(jī)械手做機(jī)器人系統(tǒng)中粗重工作。它包括兩個(gè)部分:機(jī)構(gòu)和附件,機(jī)械手也有聯(lián)結(jié)附件基座,表示一機(jī)器人基座與附件之間的連接情況。
機(jī)械手基座通常固定在工作區(qū)域的地基上,有時(shí)基座也可以移動(dòng),在這種情況下安裝在導(dǎo)軌或軌道上,允許機(jī)械手從一個(gè)位置移到另外一個(gè)位置。
正如前面所提到的那樣,附件從機(jī)器人基座上延伸出來(lái),附件就是機(jī)器人的手臂,它可以是直動(dòng)型,也可以是軸節(jié)型手臂,軸節(jié)型手臂也是大家所知的關(guān)節(jié)型手臂。
機(jī)械臂使機(jī)械手產(chǎn)生各軸的運(yùn)動(dòng)。這些軸連在一個(gè)安裝基座上,然后再連到托架上,托架確保機(jī)械手停留在某一位置。
在手臂的末端上,連接著手腕,手腕由輔助軸和手腕凸緣組成,手腕是讓機(jī)器人用戶(hù)在手腕凸緣上安裝不同工具來(lái)做不同種工作。
機(jī)械手的軸使機(jī)械手在某一區(qū)域內(nèi)執(zhí)行任務(wù),我們將這個(gè)區(qū)域?yàn)闄C(jī)器人的工作單元,該區(qū)域的大小與機(jī)械手的尺寸相對(duì)應(yīng),。隨著機(jī)器人機(jī)械結(jié)構(gòu)尺寸的增加,工作單元的范圍也必須相應(yīng)增加。
機(jī)械手的運(yùn)動(dòng)由執(zhí)行元件或驅(qū)動(dòng)系統(tǒng)來(lái)控制。執(zhí)行元件或驅(qū)動(dòng)系統(tǒng)允許各軸在工作單元內(nèi)運(yùn)動(dòng)。驅(qū)動(dòng)系統(tǒng)可用電氣、液壓和氣壓動(dòng)力,驅(qū)動(dòng)系統(tǒng)所產(chǎn)生的動(dòng)力經(jīng)機(jī)構(gòu)轉(zhuǎn)變?yōu)闄C(jī)械能,驅(qū)動(dòng)系統(tǒng)與機(jī)械傳動(dòng)鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機(jī)械傳動(dòng)鏈驅(qū)動(dòng)著機(jī)器人的各軸。
B.控制器
機(jī)器人控制器是工作單元的核心??刂破鲀?chǔ)存著預(yù)編程序供后續(xù)調(diào)用、控制外設(shè),及于廠(chǎng)內(nèi)計(jì)算機(jī)進(jìn)行通訊以滿(mǎn)足產(chǎn)品經(jīng)常更新的需要。
控制器用于控制機(jī)械手運(yùn)動(dòng)和在工作單元內(nèi)控制機(jī)械人外設(shè)。用戶(hù)可通過(guò)手持的示教盒將機(jī)械手運(yùn)動(dòng)的程序編入控制器。這些信息儲(chǔ)存在控制器的儲(chǔ)存器中以備后續(xù)調(diào)用,控制器存儲(chǔ)了機(jī)器人系統(tǒng)的所有編程數(shù)據(jù),它能存儲(chǔ)幾個(gè)不同的程序,并且所有這些程序均能編輯。
控制器要求能夠在工作單元內(nèi)與外設(shè)進(jìn)行通信。例如控制器有一個(gè)輸入端,它能標(biāo)識(shí)某個(gè)機(jī)加工操作何時(shí)完成。當(dāng)該加工循環(huán)完成后,輸入端接通,告訴控制器定位機(jī)械手以便能抓取以加工工件,隨后,機(jī)械手抓取一未加工件,將其放置在機(jī)床上。接著,控制器給機(jī)床發(fā)出開(kāi)始加工的信號(hào)。
控制器可以由根據(jù)事件順序而步進(jìn)的機(jī)械式輪鼓組成,這種類(lèi)型的控制器可用在非常簡(jiǎn)單的機(jī)械系統(tǒng)中。用于大多數(shù)機(jī)器人系統(tǒng)中的控制器代表現(xiàn)代電子學(xué)的水平,是更復(fù)雜的裝置,即它們可以使得微處理器操縱的。這些微處理器可以是8位,16位或32位處理器。它們可以使得控制器在操作過(guò)程中顯得非常柔性??刂破髂芡ㄟ^(guò)通信線(xiàn)發(fā)送電信號(hào),使它能于機(jī)械手各軸交流信息,在機(jī)器人的機(jī)械手和控制器之間的雙向交流信息可以保持系統(tǒng)操作和位置經(jīng)常更新,控制器也能控制安裝在機(jī)器人手腕上的任何工具。
控制器也有與廠(chǎng)內(nèi)各計(jì)算機(jī)進(jìn)行通信的任務(wù),這種通信聯(lián)系使機(jī)器人成為計(jì)算機(jī)輔助制造系統(tǒng)的一個(gè)組成部分。
存儲(chǔ)器?;谖⑻幚砥鞯南到y(tǒng)運(yùn)行時(shí)要與固態(tài)的存儲(chǔ)裝置相連,這些存儲(chǔ)裝置可以是磁泡,隨機(jī)存儲(chǔ)器、軟盤(pán)、磁帶等。每種記憶存儲(chǔ)裝置均能貯存、編輯信息以備后續(xù)調(diào)用和編輯。
C.動(dòng)力源
動(dòng)力源是給機(jī)器人和機(jī)械手提供動(dòng)力的單元。傳給機(jī)器人系統(tǒng)的動(dòng)力源有兩種,一種是用于控制器的交流電,另一種是用于驅(qū)動(dòng)機(jī)械手各軸的動(dòng)力源。例如,如果機(jī)器人的機(jī)械手是由液壓和氣壓驅(qū)動(dòng)的,控制信號(hào)便傳送到這些裝置
The Function of Industrial Robot in the Automatic Granular Packaging Machine
ABSTRACT:The industrial robot is a used in the manufacturing environment to increase productivity. It can be used to do routine and tesious assembly line jobs, or it can perform jobs that might be hazardous to the human worker .For example , one of the industrial robots was used to replace the nuclear fuel rods in nuclear power plants.
The basic terminology of robotic systems is introduced in the following. The robotic system has three basic components: the manipulator, the controller, and the power source.A. Manipulator The controller in the robotic system is the heart of the operation .The controller can be made from mechanically operated drums that step through a sequence of events.The controller is also required to communicate with periphral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed.
KEY WORDS: industrial robot , Packaging Machine
The industrial robot is a used in the manufacturing environment to increase productivity. It can be used to do routine and tesious assembly line jobs, or it can perform jobs that might be hazardous to the human worker .For example , one of the industrial robots was used to replace the nuclear fuel rods in nuclear power plants. A humsn doing this job might be exposed to harmful amounts of radiation .The industrial robot can also operate on the assembly line, putting together small components, such as placing electronic components on a printed circuit board. Thus, the human worker can be relieved of the routine operation of this tedious task.. Robots can also be programmed to defuse bombs, to serve the handicapped, and to perform functions in numerous in numerous applications in our society.
The robot can be thought of as a machine that will move an end-of-arm tool, sensor, and/or gripper to a preprogrammed location. When the robot arrives at this location, it will perform some sort of task. This task could be welding, sealing, machine loading, machine unloading,or a host od assembly jobs. Generally, this work can be accomplished without the involvement of a human being, except for programming and for turning the system on and off.
The basic terminology of robotic systems is introduced in the following:
1.A robot is a reprogrammable, multifunctional manipulator designed to move parts, materials, tools, or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions, presented in the following paragraphs, that give a complete picture of a robotic system.
2. Preprogrammed locations are paths that the robot must follow to accomplish work. At some of these locations, the robot will stop and perform some opertion ,such as assembly of parts, spray painting, or welding. These preprogrammed locations are stored in the robot’s memory and are recalled later for continuous poeration. Furthermore, these preprogrammed locations, as well as other program data, can be changed later as the work requirements change. Thus, with regard to this programming feature, an industrial robot is very much like a computer, where data can be stored and later recalled and edited.
3. The manipulator is the arm of the robot. It allows the robot to bend, and twist. This movement is provided by the manipulator’s axes, also called the degrees of freedom of the robot. A robot can have 3 to 16 axes. The term degrees of freedom will always relate to the number of axes found on robot.
4.The tooling and grippers are not part of the robotic system itself; rather, they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts, s pot-weld, paint. arc-weld, drill, deburr, and do a variety of tasks, depending on what is required of the robot.
5.The robotic system can also control the work cell of the operating robot. The work cell of the robot is the total environment in which the robot must perform its task. Included within this cell may be the controller ,the robot manipulator, a work table, safety features, or a conveyor. All the equipment that is required in order for the robot to do its job is included in the work cell. In addition ,signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts, pick up parts, or unload parts to a conveyor.
The robotic system has three basic components: the manipulator, the controller, and the power source.A. Manipulator
The manipulator, which does the physical work of the robotic system, consists of two sections: the mechanical section and the attached appendage. The manipulator also has a base to which the appendages are attached .
The base of the manipulator is usually fixed to the work area. Sometimes, though, the base may be movable. In this case, the base attached to either a rail or a track ,allowing the manipulator to be moved from one location to anther.
As, mentioned previously, the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight, movable arm or a jointed arm. The jointed arm is also known as an articulated arm.
The appendages of the robot manipulator give the manipulator its various axes of motion .These axes are attached to a fixed base, which ,in turn, is secured to a mounting .This mounting ensures that the manipulator will remain in one location.
At the end of the arm, a wrist is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.
The manipulator’s axes allow it to perform work within a certain area. This area is called the work cell of the robot, and its size corresponds to the size of the manipulator.Fig21-2 illustrates the work cell of a typical assembly robot. As the robot’s physical size increases, the size of the work cell must also increase.
The movement of the manipulator is controlled by actuators, or drive system. The actuators, or drive system, allows the various axes to move within the work cell. The drive system can use electric, hydraulic, r pneumatic power. The energy developed by the drive system is converted to mechanical power by various mechanical drive systems. The drive systems are coupled through mechanical linkages. These linkages, in turn, drive the different axes of the robot. The mechanical linkages may be composed of chains , gears, and ball screws.
B.Controller
The controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall, controls peripheral devices, and communicates with computers within the plant for constant updates in production.
The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendant. This information is stored in the memory of the controller for later recall. The controller stores all program data for the robotic system .It can store several different programs, and of these programs can be edited.
The controller is also required to communicate with periphral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed ,the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine .Next, the controller signals the machine to start operation.
The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system .The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics. That is ,they are microprocessor-operated. These microprocessors are either 8-bit,16bit,or 32-bit processors. This power allows the controller to be very flexible in its operation.
The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system .The controller also controls any tooling placed on the end of the robot’s wrist.
The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part of a computer-assisted manufacruring(CAM)system.
As the basic definition stated, the robot is a reprogrammable, multifunctional manipulator. Therefore, the controller must contain some type of memory storage. The microprocessor-based systems operate in conjunction with solid-state memory devices. These memory devices may be magnetic bubbles, random-access memory, floppy disks, or magnetic tape. Each memory storage device stores program information for later recall or for editing.
C.Power supply
The power supply is the unit that supplies power to the controller and the manipulator. Two types of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power is used for driving the various axes of the manipulator. for example ,if the robot manipulator is controlled by hydraulic or pneumatic drives, control signals are sent to these devices, causing motion of the robot.
For each robotic system, power is required to operate the manipulator. This power can be developed from either a hydraulic power source, a pneumatic power source, or anelectric power source. These power sources are part of the total components of the robotic work cell.
收藏