小型臥式數(shù)控銑床的結(jié)構(gòu)設(shè)計及應(yīng)用含NX三維及14張CAD圖帶開題
小型臥式數(shù)控銑床的結(jié)構(gòu)設(shè)計及應(yīng)用含NX三維及14張CAD圖帶開題,小型,臥式,數(shù)控,銑床,結(jié)構(gòu)設(shè)計,應(yīng)用,利用,運用,nx,三維,14,cad,開題
小型臥式數(shù)控銑床的結(jié)構(gòu)設(shè)計及應(yīng)用
摘 要
本次設(shè)計是對小型臥式數(shù)控銑床的設(shè)計。在這里主要包括:傳動系統(tǒng)的設(shè)計、旋轉(zhuǎn)工作臺部位系統(tǒng)的設(shè)計、主軸系統(tǒng)的設(shè)計這次畢業(yè)設(shè)計對設(shè)計工作的基本技能的訓練,提高了分析和解決工程技術(shù)問題的能力,并為進行一般機械的設(shè)計創(chuàng)造了一定條件。
整機結(jié)構(gòu)主要由電動機產(chǎn)生動力通過聯(lián)軸器將需要的動力傳遞到絲桿上,絲桿帶動絲桿螺母,從而帶動整機運動,提高勞動生產(chǎn)率和生產(chǎn)自動化水平。更顯示其優(yōu)越性,有著廣闊的發(fā)展前途。
本論文研究內(nèi)容:
(1) 小型臥式數(shù)控銑床總體結(jié)構(gòu)設(shè)計。
(2) 小型臥式數(shù)控銑床工作性能分析。
(3)電動機的選擇。
(4) 小型臥式數(shù)控銑床的傳動系統(tǒng)、執(zhí)行部件設(shè)計。
(5)對設(shè)計零件進行設(shè)計計算分析和校核。
(6)繪制整機裝配圖及重要部件裝配圖和設(shè)計零件的零件圖。
關(guān)鍵詞:小型臥式數(shù)控銑床, 聯(lián)軸器,滾珠絲杠
The structure design and application of small horizontal CNC milling machine
Abstract
This design is the design of small horizontal CNC milling machine. Here mainly include: Design of transmission system, rotary working parts of platform system design of spindle system, the design of the graduation design on the design of the basic skills training, improve the analysis and solve engineering problems, and for general mechanical design created certain conditions.
The structure of the whole machine is mainly driven by the electric motor through the coupling and the power is transferred to the screw rod, the screw rod drives the screw nut to drive the whole machine to improve the labor productivity and the level of production automation. To show its superiority, has broad prospects for development.
The content of this paper:
(1) the overall structure design of small CNC milling machine.
(2) performance analysis of small CNC milling machine work.
(3) the choice of motor.
(4) the design of transmission system and executive components of small horizontal CNC milling machine.
(5) the design of parts design calculation and check.
(6) drawing machine assembly and important parts assembly drawings and parts drawings design.
Key words: small CNC milling machine, ball screw coupling.
目 錄
1 緒論 1
1.3 本課題研究的內(nèi)容及方法 2
1.3.1 主要的研究內(nèi)容 2
1.3.2 設(shè)計要求 3
2 總體方案機構(gòu)設(shè)計 4
3 水平進給機構(gòu)結(jié)構(gòu)及傳動設(shè)計 5
3.1 水平進給滾珠絲桿副的選擇 5
3.1.1 導程確定 5
3.1.2 確定絲桿的等效轉(zhuǎn)速 5
3.1.3 估計工作臺質(zhì)量及負重 5
3.1.4 確定絲桿的等效負載 5
3.1.5 確定絲桿所受的最大動載荷 6
3.1.6 精度的選擇 7
3.1.7 選擇滾珠絲桿型號 7
3.2 校核 7
3.2.1 臨界壓縮負荷驗證 8
3.2.2 臨界轉(zhuǎn)速驗證 8
3.2.3 絲桿拉壓振動與扭轉(zhuǎn)振動的固有頻率 9
3.3 電機的選擇 10
3.3.1 電機軸的轉(zhuǎn)動慣量 10
3.3.2 電機扭矩計算 11
4 垂直進給機構(gòu)設(shè)計計算 13
4.1 設(shè)計條件 13
4.2.1 滾珠絲杠的精度 13
4.2.2 滾珠絲杠參數(shù)的計算 13
4.3 伺服電機的選擇 17
4.3.1 最大負載轉(zhuǎn)矩的計算 17
4.3.2 負載慣量的計算 17
4.3.3 空載加速轉(zhuǎn)矩計算 18
4.4 導軌副的計算、選擇 19
4.5 聯(lián)軸器的選擇 20
5 旋轉(zhuǎn)工作臺機構(gòu) 21
5.1 電機的選擇 21
5.2 同步帶傳動計算 22
5.2.1 同步帶計算選型 22
5.2.2 同步帶的主要參數(shù)(結(jié)構(gòu)部分) 24
5.2.3 同步帶的設(shè)計 26
5.2.4 同步帶輪的設(shè)計 27
6 主軸工作機構(gòu)設(shè)計 28
6.1 電機的選型 28
6.2 同步帶傳動計算 29
6.2.1 同步帶計算選型 29
6.2.2 同步帶的設(shè)計 32
6.3 主軸主軸的設(shè)計 33
6.3.1 確定主軸主軸最小直徑 33
6.3.2 求軸上的載荷 34
6.3.3 按彎曲扭轉(zhuǎn)合成應(yīng)力校核軸的強度 34
6.3.4 精確校核軸的疲勞強度 35
5.4 主軸組件設(shè)計計算 37
5.4.1 主軸的材料與熱處理 37
5.4.2 主軸直徑的選擇 38
5.4.3 主軸前后軸承的選擇 39
5.4.4 軸承的選型及校核 40
5.4.5 主軸前端懸伸量 42
5.4.6 主軸支承跨距 43
5.4.7 主軸結(jié)構(gòu)圖 43
5.4.8 主軸的校核 43
5.4.9 軸承壽命校核 47
5.4.10 主軸組件中相關(guān)部件 47
結(jié)論 50
致 謝 50
參考文獻 51
小型臥式數(shù)控銑床的結(jié)構(gòu)設(shè)計及應(yīng)用
1 緒論
1.1 目的、意義
目的:隨著社會生產(chǎn)和科學技術(shù)的迅速發(fā)展,很多企業(yè)已經(jīng)越來越注重精細化生產(chǎn)和發(fā)展,從而來滿足人們對復雜多變的產(chǎn)品的需要。因而,在現(xiàn)代機械工業(yè)生產(chǎn)中,小批量多品種零件的加工生產(chǎn)占產(chǎn)品總數(shù)量的比例會越來越高,而零件的復雜性和精度等級要求也會迅速地提高,所以很多產(chǎn)品都需要進行銑削加工??丶夹g(shù)水平的高低已成為衡量一個國家制造業(yè)現(xiàn)代化程度的核心標志,他實現(xiàn)加工機床及生產(chǎn)過程數(shù)控化,已成為當今制造業(yè)的發(fā)展方向。數(shù)控銑床是一種加工功能很強的數(shù)控機床,目前迅速發(fā)展起來的加工中心、柔性加工單元都是在數(shù)控銑床、數(shù)控鏜床的基礎(chǔ)上產(chǎn)生的,兩者都離不開銑削方式。由于數(shù)控銑削工藝最復雜,需要解決的技術(shù)問題也最多,因此人們在研究和開發(fā)數(shù)控系統(tǒng)及自動編程語言的軟件時,也一直把銑削加工作為重點。
意義:大學生的畢業(yè)設(shè)計是大學四年中的一項非常重要的工作,其通過根據(jù)大學四年所學的專業(yè)知識,運用機械原理的思想進行設(shè)計,從而很好地培養(yǎng)了自己在實踐中提出問題,分析問題,解決問題的實踐能力,為畢業(yè)后能成為一名優(yōu)秀的設(shè)計人員做了很好的鋪墊。本次畢業(yè)設(shè)計,我的題目是:《xk100立式數(shù)控銑床主軸設(shè)計》,通過此次的設(shè)計,我可以對數(shù)控銑床主軸的內(nèi)部零件結(jié)構(gòu),運動方式,工作原理等方面能有進一步的理解;通過xk100立式數(shù)控銑床主軸的設(shè)計,從而掌握銑床主軸設(shè)計的基本原理和方法,同時也能夠?qū)S勉姶仓鬏S的設(shè)計作進一步的學習和理解應(yīng)用;同時也能夠很好的提高自身的專業(yè)技能水平,爭取早日成為一名優(yōu)秀的設(shè)計人員。
1.2 國內(nèi)外研究現(xiàn)狀
國外研究現(xiàn)狀:
世界數(shù)控機床的年產(chǎn)量已在15萬臺以上(產(chǎn)值超過200億美元)總擁有量超過100萬臺。在工業(yè)發(fā)達國家數(shù)控機床品種已超過150種。1992年日本的年產(chǎn)量為32037臺,約占21%德國年產(chǎn)量為14758臺,約占10%;美國年產(chǎn)量為6663臺,約占4.4%;原蘇聯(lián)(在1985年時)年產(chǎn)量為17600臺,約占11.7%;我國年產(chǎn)7450臺,約占5%;臺灣年產(chǎn)5385臺,約占3.5%。僅日、德、美三國,年產(chǎn)數(shù)控機床就占世界數(shù)控機床年產(chǎn)量的36%。
日本、美國、英國、德國、法國、意大利等六國1989年金屬切削機床的總產(chǎn)值與1980年比,僅增加54%,但同期數(shù)控機床的產(chǎn)值比1980年刪增加了256%。1990年,日本數(shù)控機床的年產(chǎn)量已達61697臺,年產(chǎn)量的數(shù)控化率為31.8%,年產(chǎn)值的數(shù)控化率為76%。其他五國的年產(chǎn)量數(shù)控化率均在20%以上,年產(chǎn)值數(shù)控化率均在50%以上。上述六國擁有量數(shù)控化率在10%以上。1994年日本擁有量的數(shù)控化率為20.8%。
國內(nèi)研究現(xiàn)狀:
我國的數(shù)控機床無論從產(chǎn)品種類、技術(shù)水平、質(zhì)量和產(chǎn)量上都取得了很大的發(fā)展,在一些關(guān)鍵技術(shù)方面也取得了重大突破。據(jù)統(tǒng)計,目前我國可供市場的數(shù)控機床有1500種,幾乎覆蓋了整個金屬切削機床的品種類別和主要的鍛壓機械。這標志著國內(nèi)數(shù)控機床已進入快速發(fā)展的時期。
超精密球的加面車床為陀螺儀工提供了基礎(chǔ)設(shè)備,這類車床也可用于透鏡模具、照相機塑料鏡片、條型碼閱讀設(shè)備、激光加工機光路系統(tǒng)用聚焦反射鏡等產(chǎn)品的加工。
高速五軸龍門銑床采用銑頭內(nèi)油霧潤滑冷卻、橫梁預應(yīng)力反變形控制等技術(shù)。這類銑床可用于航空、航天、造船、水泵葉片、高檔模具等的加工。
目前我國已經(jīng)可以供應(yīng)網(wǎng)絡(luò)化、集成化、柔性化的數(shù)控機床。同時,我國也已進入世界高速數(shù)控機床和高精度精密數(shù)控機床生產(chǎn)國的行列。目前我國已經(jīng)研制成功一批主軸轉(zhuǎn)速在8000—10000r/min以上的數(shù)控機床。我國數(shù)控機床行業(yè)近年來大力推廣應(yīng)用CAD等技術(shù),很多企業(yè)已開始和計劃實施應(yīng)用ERP、MRPII和電子商務(wù)。
“十五”期間 我國機床產(chǎn)業(yè)發(fā)展十分迅猛。據(jù)國家統(tǒng)計局資料,2005年我國機床工具行業(yè)合計完成工業(yè)總產(chǎn)值l260億元人民幣,是“九五”末期的23倍;產(chǎn)品售收人1213億元,是“九五”末期的239倍。中國機床工具工業(yè)協(xié)會公布的數(shù)據(jù)表明,在去年全行業(yè)工業(yè)總產(chǎn)值中,金屬加工機床銷售超過400億元人民幣,自2002年起連續(xù)三年銷售額已居日本、德國、意大利之后,排名第四位。
目前,我國進口的數(shù)控系統(tǒng)基本為德國西門子(SIMENS)和日本發(fā)那科(FANUC)兩家公司所壟斷,這兩家公司在世界市場的占有率超過80%。在國內(nèi)尚無自主知識產(chǎn)權(quán)高端數(shù)控系統(tǒng)替代的前提下,西門子和發(fā)那科擁有絕對的價格優(yōu)勢。加上高性能數(shù)控系統(tǒng)具有超越經(jīng)濟價值的戰(zhàn)略意義,發(fā)達國對出口中國的數(shù)控系統(tǒng)始終有所限制,甚至像五軸聯(lián)動以上的高性能數(shù)控系統(tǒng)產(chǎn)品絕對禁止向中國出口。
1.3 本課題研究的內(nèi)容及方法
1.3.1 主要的研究內(nèi)容
在查閱了國內(nèi)外大量的有關(guān)數(shù)控小型臥式數(shù)控銑床設(shè)計理論及相關(guān)知識的資料和文獻基礎(chǔ)上,綜合考慮數(shù)控小型臥式數(shù)控銑床結(jié)構(gòu)特點、具體作業(yè)任務(wù)特點以及數(shù)控小型臥式數(shù)控銑床的推廣應(yīng)用,分析確定使用三自由度關(guān)節(jié)型數(shù)控小型臥式數(shù)控銑床配合生產(chǎn)工序,實現(xiàn)自動化的目的。
為了實現(xiàn)上述目標,本文擬進行的研究內(nèi)容如下:
1 根據(jù)現(xiàn)場作業(yè)的環(huán)境要求和數(shù)控小型臥式數(shù)控銑床本身的結(jié)構(gòu)特點,確定數(shù)控小型臥式數(shù)控銑床整體設(shè)計方案。
2 確定數(shù)控小型臥式數(shù)控銑床的性能參數(shù),對初步模型進行靜力學分析,根據(jù)實際情況選擇電機。
3 從所要功能的實現(xiàn)出發(fā),完成數(shù)控小型臥式數(shù)控銑床各零部件的結(jié)構(gòu)設(shè)計;
4 完成主要零部件強度與剛度校核。
1.3.2 設(shè)計要求
1 根據(jù)所要實現(xiàn)的功能,提出三維數(shù)控小型臥式數(shù)控銑床的整體設(shè)計方案;
2 完成三維數(shù)控小型臥式數(shù)控銑床結(jié)構(gòu)的詳細設(shè)計;
3 通過相關(guān)設(shè)計計算,完成電機選型;
4 完成三維數(shù)控小型臥式數(shù)控銑床結(jié)構(gòu)的三維造型;繪制三維數(shù)控小型臥式數(shù)控銑床結(jié)構(gòu)總裝配圖、主要零件圖。
53
2 總體方案機構(gòu)設(shè)計
2.1 設(shè)計要求
滿載功率1kw,最高轉(zhuǎn)速500rpm,進給傳動最低速度0.01mm/r,高速度0.2mm/r,最大載荷1000N,精度±0.05mm。
2.2 方案擬定
數(shù)控小型臥式數(shù)控銑床的設(shè)計應(yīng)滿足一下幾個條件首先就是必須保證工件定位可靠的可靠性,為了使工件與點保持準確的相對位置,必須根據(jù)要求的點,去選擇合適的定位機構(gòu)。再者就是要有足夠的強度和剛度 除了受到工件、工具的重量,還要受到本身的重量,還受到槍在運動過程中產(chǎn)生的慣性力和振動的影響,沒有足夠的強度和剛度可能會發(fā)生折斷或者彎曲變形,所以對于受力較大的進行強度、剛度計算是非常必要的。最后要盡可能做到具有一定的通用性 如果可以,應(yīng)考慮到產(chǎn)品零件變換的問題。為適應(yīng)不同形狀和尺寸的零件,為滿足這些要求,可將制成組合式結(jié)構(gòu),迅速更換不同的部件及附件來擴大機構(gòu)的使用范圍。
X軸和Z軸采用絲杠傳動:X軸 電動機—聯(lián)軸器—滾珠絲杠
Z軸 電動機—聯(lián)軸器—滾珠絲杠
3 水平進給機構(gòu)結(jié)構(gòu)及傳動設(shè)計
3.1 水平進給滾珠絲桿副的選擇
滾珠絲桿副就是由絲桿、螺母和滾珠組成的一個機構(gòu)。他的作用就是把旋轉(zhuǎn)運動轉(zhuǎn)和直線運動進行相互轉(zhuǎn)換。絲桿和螺母之間用滾珠做滾動體,絲杠轉(zhuǎn)動時帶動滾珠滾動。
滿載功率1kw,最高轉(zhuǎn)速500rpm,進給傳動最低速度0.01mm/r,高速度0.2mm/r,最大載荷1000N,精度±0.05mm。設(shè)水平進給最大行程為200mm, 兩側(cè)各留10mm的安全距離.絲杠等組件大概質(zhì)量為50kg,工作臺大概質(zhì)量為80kg,移動部件大概質(zhì)量為30kg
3.1.1 導程確定
電機與絲桿通過聯(lián)軸器連接,故其傳動比i=1, 選擇電動機的最高轉(zhuǎn)速,則絲杠的導程為
取Ph=12mm
3.1.2 確定絲桿的等效轉(zhuǎn)速
基本公式
最大進給速度是絲桿的轉(zhuǎn)速
最小進給速度是絲桿的轉(zhuǎn)速
絲桿的等效轉(zhuǎn)速
式中取故
3.1.3 估計工作臺質(zhì)量及負重
絲杠等組件重量
工作臺重量
移動部件重量
3.1.4 確定絲桿的等效負載
工作負載是指機床工作時,實際作用在滾珠絲桿上的軸向壓力,他的數(shù)值用進給牽引力的實驗公式計算。選定導軌為滑動導軌,取摩擦系數(shù)為0.03,K為顛覆力矩影響系數(shù),一般取1.1~1.5,本課題中取1.3,則絲桿所受的力為
其等效載荷按下式計算(式中取,)
3.1.5 確定絲桿所受的最大動載荷
fw-------負載性質(zhì)系數(shù),(查表:取fw=1.2)
ft--------溫度系數(shù)(查表:取ft=1)
fh-------硬度系數(shù)(查表:取fh =1)
fa-------精度系數(shù)(查表:取fa =1)
fk-------可靠性系數(shù)((查表:取fk =1)
Fm------等效負載
nz-------等效轉(zhuǎn)速
Th ----------工作壽命,取絲桿的工作壽命為15000h
由上式計算得Car=17300N
表3-1-1各類機械預期工作時間Lh
表3-1-2精度系數(shù)fa
表3-1-3可靠性系數(shù)fk
表3-1-4負載性質(zhì)系數(shù)fw
3.1.6 精度的選擇
滾珠絲杠副的精度對電氣機床的定位精度會有影響,在滾珠絲杠精度參數(shù)中,導程誤差對機床定位精度是最明顯的。一般在初步設(shè)計時設(shè)定絲杠的任意300行程變動量應(yīng)小于目標設(shè)定定位精度值的1/3~1/2,在最后精度驗算中確定。選用滾珠絲杠的精度等級絲軸為1~3級(1級精度最高),考慮到本設(shè)計的定位精度要求及其經(jīng)濟性,選擇X軸精度等級為3級
3.1.7 選擇滾珠絲桿型號
計算得出Ca=Car=17.3KN,
則Coa=(2~3)Fm=(34.6~51.9)KN
公稱直徑Ph=12mm
則選擇FFZD型內(nèi)循環(huán)浮動返向器,雙螺母墊片預緊滾珠絲桿副,絲桿的型號為FFZD4010—3。
公稱直徑 d0=40mm 絲桿外徑d1=39.5mm 鋼球直徑dw=7.144mm 絲桿底徑d2=34.3mm 圈數(shù)=3圈 Ca=30KN Coa=66.3KN 剛度kc=973N/μm
3.2 校核
滾珠絲桿副的拉壓系統(tǒng)剛度影響系統(tǒng)的定位精度和軸向拉壓震動固有頻率,其扭轉(zhuǎn)剛度影響扭轉(zhuǎn)固有頻率。承受軸向負荷的滾珠絲桿副的拉壓系統(tǒng)剛度KO有絲桿本身的拉壓剛度KS,絲桿副內(nèi)滾道的接觸剛度KC,軸承的接觸剛度Ka,螺母座的剛度Kn,按不同支撐組合方式計算而定。
3.2.1 臨界壓縮負荷驗證
絲桿的支撐方式對絲桿的剛度影響很大,采用一端固定一端支撐的方式。臨界壓縮負荷按下列計算:
式中E------材料的彈性模量E鋼=2.1X1011(N/m2)
LO-------最大受壓長度(m)
K1-------安全系數(shù),取K1=1.3
Fmax-------最大軸向工作負荷(N)
f1-------絲桿支撐方式系數(shù):f1=15.1
I=絲桿最小截面慣性距(m4)
式中do--------是絲桿公稱直徑(mm)
dw------------滾珠直徑(mm),
絲桿螺紋不封閉長度Lu=工作臺最大行程+螺母長度+兩端余量
Lu=300+148+20X2=488mm
支撐距離LO應(yīng)該大于絲桿螺紋部分長度Lu,選取LO=620mm
代入上式計算得出Fca=5.8X108N
可見Fca>Fmax,臨界壓縮負荷滿足要求。
3.2.2 臨界轉(zhuǎn)速驗證
滾珠絲杠副高速運轉(zhuǎn)時,需驗算其是否會發(fā)生共振的最高轉(zhuǎn)速,要求絲杠的最高轉(zhuǎn)速:
式中:A------絲桿最小截面:A=
-------絲杠內(nèi)徑,單位;
P--------材料密度p=7.85*103(Kg/m)
--------臨界轉(zhuǎn)速計算長度,單位為,本設(shè)計中該值為=148/2+300+(620-488)/2=440mm
----------安全系數(shù),可取=0.8
fZ----------絲杠支承系數(shù),雙推-簡支方式時取18.9
經(jīng)過計算,得出= 6.3*104,該值大于絲杠臨界轉(zhuǎn)速,所以滿足要求。
3.2.3 絲桿拉壓振動與扭轉(zhuǎn)振動的固有頻率
絲杠系統(tǒng)的軸向拉壓系統(tǒng)剛度Ke的計算公式
式中 A——絲杠最小橫截面,;
螺母座剛度KH=1000N/μm。
當導軌運動到兩極位置時,有最大和最小拉壓剛度,其中,L植分別為750mm和100mm。
經(jīng)計算得:
式中 Ke ——滾珠絲杠副的拉壓系統(tǒng)剛度(N/μm);
KH——螺母座的剛度(N/μm);KH=1000 N/μm
Kc——絲杠副內(nèi)滾道的接觸剛度(N/μm);
KS——絲杠本身的拉壓剛度(N/μm);
KB——軸承的接觸剛度(N/μm)。
經(jīng)計算得絲杠的扭轉(zhuǎn)振動的固有頻率遠大于1500r/min,能滿足要求。
3.3 電機的選擇
步進電機是一種能將數(shù)字輸入脈沖轉(zhuǎn)換成旋轉(zhuǎn)或直線增量運動的電磁執(zhí)行元件。每輸入一個脈沖電機轉(zhuǎn)軸步進一個距角增量。電機總的回轉(zhuǎn)角與輸入脈沖數(shù)成正比例,相應(yīng)的轉(zhuǎn)速取決于輸入脈沖的頻率。步進電機具有慣量低、定位精度高、無累計誤差、控制簡單等優(yōu)點,所以廣泛用于機電一體化產(chǎn)品中。選擇步進電動機時首先要保證步進電機的輸出功率大于負載所需的功率,再者還要考慮轉(zhuǎn)動慣量、負載轉(zhuǎn)矩和工作環(huán)境等因素。
3.3.1 電機軸的轉(zhuǎn)動慣量
a、回轉(zhuǎn)運動件的轉(zhuǎn)動慣量
上式中:d—直徑,絲桿外徑d=39.5mm
L—長度=1m
P—鋼的密度=7800
經(jīng)計算得
b、水平進給直線運動件向絲桿折算的慣量
上式中:M—質(zhì)量 水平進給直線運動件M=160kg
P—絲桿螺距(m)P=0.001m
經(jīng)計算得
c、聯(lián)軸器的轉(zhuǎn)動慣量
查表得
因此
3.3.2 電機扭矩計算
a、折算至電機軸上的最大加速力矩
上式中:
J=0.0028kg/m2
ta—加速時間 KS—系統(tǒng)增量,取15s-1,則ta=0.2s
經(jīng)計算得
b、折算至電機軸上的摩擦力矩
上式中:F0—導軌摩擦力,F(xiàn)0=Mf,而f=摩擦系數(shù)為0.02,F(xiàn)0=Mgf=32N
P—絲桿螺距(m)P=0.001m
η—傳動效率,η=0.90
I—傳動比,I=1
經(jīng)計算得
c、折算至電機軸上的由絲桿預緊引起的附加摩擦力矩
上式中P0—滾珠絲桿預加載荷≈1500N
η0—滾珠絲桿未預緊時的傳動效率為0.9
經(jīng)計算的T0=0.05N·M
則快速空載啟動時所需的最大扭矩
根據(jù)以上計算的扭矩及轉(zhuǎn)動慣量,選擇電機型號為SIEMENS的IFT5066,其額定轉(zhuǎn)矩為6.7。
4 垂直進給機構(gòu)設(shè)計計算
4.1 設(shè)計條件
滿載功率1kw,最高轉(zhuǎn)速500rpm,進給傳動最低速度0.01mm/r,高速度0.2mm/r,最大載荷1000N,精度±0.05mm。進給機構(gòu)的進給運動,由進電機的轉(zhuǎn)動,然后帶動工作臺絲杠傳動。在數(shù)控工作臺上的絲杠傳動,可以用普通的絲杠傳動,也還有應(yīng)用滾珠絲杠來轉(zhuǎn)動。原因是普通絲杠傳動摩,但總是不太穩(wěn)定。
4.2.1 滾珠絲杠的精度
查閱滾珠絲杠的樣本選擇絲杠精度為5級精度等級,有初步設(shè)計現(xiàn)設(shè)絲杠效行程350 mm,行程偏差允許達到30μm。
4.2.2 滾珠絲杠參數(shù)的計算
(1)最大工作載荷的計算
絲杠的最大載荷為工作時的最大進給力加摩擦力,最小載荷即為摩擦力。設(shè)最大進給力=5000N,導軌上面移動部件的重量約為500㎏,導軌的摩擦系數(shù)為0.04,故絲杠的最小載荷(即摩擦力)
(N) (4.1)
絲杠最大載荷是:
5000+196=5196(N) (4.2)
平均載荷是:
=×=≈3529(N) (4.3)
(2)當量動載荷的計算
滾珠絲杠副類型的選擇主要是根據(jù)導程和動載荷兩個參數(shù),其選擇的原則為:①滾珠絲杠的靜載荷Coa不能大于額定靜載荷Coam,即Coa≤Coam;②滾珠絲杠的動載荷Ca不能大于額定動載荷Cam,即Ca≤Cam。
驅(qū)動電機最高轉(zhuǎn)速2000 r/min
絲杠最高轉(zhuǎn)速為2000r/min,工作臺最小進給速度為0.5m/min,故絲杠的最低轉(zhuǎn)速為0.1r/min,可取為0,則平均轉(zhuǎn)速n=1000r/min。絲杠使用壽命T=15000h,故絲杠的工作壽命
==675(r) (4.4)
當量動載荷值: (4.5)
式中: ——載荷性質(zhì)系數(shù),無沖擊取1-1.2,一般情況取1.2-1.5,有較大沖擊振動時取1.5-2.5;
——精度影響系數(shù),對1、2、3級精度的滾珠絲杠取=1.0,對4、5級精度的絲杠取=0.9。
根據(jù)要求去=1.5,=0.9,代入數(shù)據(jù)得
≈51.59(KN) (4.6)
根據(jù)計算所得最大動載荷和初選的絲杠導程,查滾珠絲杠樣本,選擇FF4010-5型內(nèi)循環(huán)浮動返回器雙螺母對旋預緊滾珠絲杠副,其公稱直徑為40mm,導程為10mm,循環(huán)滾珠為5圈×2列,精度等級取5級,額定動載荷為55600N,大于最大計算動載荷=51590N,符合設(shè)計要求。
表4.1 滾珠絲杠螺母副的幾何參數(shù)
名 稱
符 號
計算公式和結(jié)果
公稱直徑(mm)
40
螺距(mm)
P
10
接觸角
鋼球直徑(mm)
7.144
螺紋滾道法面半徑(mm)
偏心距(mm)
0.009
螺紋升角(mm)
=
絲杠外徑(mm)
39.5
絲杠底徑(mm)
34.3
螺桿接觸直徑(mm)
32.87
(3)傳動效率的計算
將公稱直徑=40mm,導程=10mm,代入λ=arctan[],的絲杠螺旋升角λ=。將摩擦角,代入=,得傳動效率=93.7%。
(4)剛度的驗算
本傳動系統(tǒng)的絲杠采用一端軸向固定,一端浮動的結(jié)構(gòu)形式。固定端采用一對面對面角接觸球軸承和一個角接觸球軸承,另一端也采用角接觸球軸承,這種安裝適應(yīng)于較高精度、中等載荷的絲杠。
滾珠絲杠螺母的剛度的驗算可以用接觸量來校核。
a、滾珠絲杠滾道間的接觸變
根據(jù)公式Z=,求得單圈滾珠數(shù)Z=22,改型號絲杠為雙螺母,滾珠的圈數(shù)×列數(shù)為5×2,代入公式圈數(shù)×列數(shù),得滾珠總數(shù)量=220。絲杠預緊時,取軸向預緊力=1732(N)。查相關(guān)公式得滾珠絲杠與螺紋滾道間接觸變形
(4.7)
式中=51590N。代入數(shù)據(jù)得;
==0.013(mm)
因為絲杠有預緊力,且為軸向負載,所以實際變形量可以減少一半,取=0.0065mm。
b、絲杠在工作載荷作用下的抗壓變形
絲杠采用的是兩端都為角接觸球軸承,軸承的中心距a=720mm,鋼的彈性模量E=,由表2.1中可知,滾珠直徑=7.144mm,絲杠底徑=34.3mm,則絲杠的截面積: =1540.6()
根據(jù)公式代入數(shù)據(jù)得:
=0.018(mm)
C、總的變形
==0.0065+0.018=0.0245mm,絲杠的有效行程為600, 絲杠在有效行程500—400mm時,行程偏差允許達到30μm,,可見絲杠剛度足夠。
(5)穩(wěn)定性的驗算
(4.8)
公式中取支撐系數(shù)=2,
由絲杠底徑=43.3mm求的截面慣性矩=188957.7(),壓桿穩(wěn)定安全系數(shù)K取3(絲杠臥式水平安裝),滾珠螺母至軸向固定處的距離取最大值1200mm,代入公式得:
=181129.6(㎏)
則f=181129.6N大于=51590N,故不會失穩(wěn),滿足使用要求。
(6)臨界轉(zhuǎn)速的驗算
對于滾珠絲杠還有可能發(fā)生共振,需要驗算其臨界轉(zhuǎn)速,設(shè)不會發(fā)生共振的最高轉(zhuǎn)速為臨界轉(zhuǎn)速。
查資料得公式 :
(4.9)
為絲杠支承方式系數(shù)(一端固定,一端游動)
代入數(shù)據(jù)得:4397(r/min),臨界速度遠大于絲杠所需轉(zhuǎn)速,故不會發(fā)生共振。
(7)滾珠絲杠選型和安裝尺寸的確定
由以上驗算可以知道,絲杠型號為FF4010—5,完全符合所需要求,故確定選用該型號,安裝尺寸查表可知。
(8)絲杠支承的選擇
滾珠絲杠的主要載荷是軸向載荷,徑向載荷主要是臥式絲杠的自重。因此對絲杠的軸向精度和軸向剛度應(yīng)有較高要求。其兩端支承的配置情況為軸向固定方式。本次設(shè)計絲杠支承選用一端固定,另一端浮動。
4.3 伺服電機的選擇
4.3.1 最大負載轉(zhuǎn)矩的計算
所選伺服電機的額定轉(zhuǎn)矩應(yīng)大于最大切削負載轉(zhuǎn)矩。最大切削負載轉(zhuǎn)矩T可根據(jù)以下公式計算,即
(4.10)
從前面的計算可以知道,最大載荷N,絲杠導程=10mm=0.01m,預緊力=N,根據(jù)計算的滾珠螺母絲杠的機械效率=0.947,因為滾珠絲杠預加載荷引起的附加摩擦力矩:
(N·m) (4.11)
查手冊得單個軸承的摩擦力矩為0.32N·m,故一對軸承的摩擦力矩=0.64N·m。簡支端軸承步預緊,其摩擦力矩可忽略不計。伺服電動機與絲杠直接相連,其傳動比=1,則最大切削負載轉(zhuǎn)矩:
(N·m)
所選的伺服電機額定轉(zhuǎn)矩應(yīng)該大于此值。
4.3.2 負載慣量的計算
伺服電機的轉(zhuǎn)動慣量應(yīng)與負載慣量相匹配。
負載慣量可以按一下次序計算。立柱與主軸箱的質(zhì)量為500㎏,折算到電動機軸上的慣量可按下式計算,
(kg·㎡) (3.14)
絲杠名義直徑=50mm=0.05m,長度L=1.2m絲杠材料(鋼)的密度ρ=7.8㎏·。根據(jù)公式計算絲杠加在電動機軸上的慣量
(㎏·㎡) (4.12)
聯(lián)軸器加上鎖緊螺母等的慣量可直接查手冊得到,即(㎏·㎡)
故負載總的慣量為
(㎏·㎡)
電動機的轉(zhuǎn)子慣量應(yīng)與負載慣量相匹配。通常要求不小于,但也不是越大越好。因越大,總的慣量就越大,加速度性能受影響。為了保證足夠的角加速度,以滿足系統(tǒng)反應(yīng)的靈敏的,將采用轉(zhuǎn)矩較大的伺服電動機和它的伺服控制系統(tǒng)。根據(jù)有關(guān)資料的推薦,匹配條件為:
(4.13)
則所選交流伺服電動機的轉(zhuǎn)子慣量應(yīng)在0.0092—0.036㎏·㎡范圍之內(nèi)。
根據(jù)上述計算可選用表3.2中的交流伺服電機α22/3000i型,其額定轉(zhuǎn)矩為22N·m,最高,轉(zhuǎn)動慣量J=0.012㎏·㎡。
表4.2 FANUCα(HV)i系列交流伺服電機
型號
α1/ 5000i
α2/ 5000i
α4/ 4000i
α8/ 3000i
α12/ 3000i
α22/3000i
輸出功率/kw
0.5
0.75
1.4
1.6
3
4
額定轉(zhuǎn)矩(N·m)
1
2
4
8
12
22
最高轉(zhuǎn)速
5000
5000
4000
3000
3000
3000
轉(zhuǎn)動慣量(㎏·㎡)
0.00031
0.00053
0.0014
0.0026
0.0026
0.012
質(zhì)量㎏
3
4
8
12
18
29
伺服放大器規(guī)格
20i
20i
20i
40i
80i
80i
4.3.3 空載加速轉(zhuǎn)矩計算
當執(zhí)行件從靜止以階躍指令加速到最大移動(快速)速度時,所需要的空載加速轉(zhuǎn)矩按下式求,
(4.14)
空載加速時,主要克服的是慣性,選用的α22/3000i型交流伺服電動機,總慣量
0.0120+0.0092=0.0212(㎏·㎡)
加速度時間通常取的3~4倍,故=(3~4)=(3~4)×6=18~24(ms),則
(N·m)
4.4 導軌副的計算、選擇
根據(jù)給定的工作載荷Fz和估算的Wx和Wy計算導軌的靜安全系數(shù)fSL=C0/P,式中:C0為導軌的基本靜額定載荷,kN;工作載荷P=0.5(Fz+W); fSL=1.0~3.0(一般運行狀況),3.0~5.0(運動時受沖擊、振動)。根據(jù)計算結(jié)果查有關(guān)資料初選導軌:
因系統(tǒng)受中等沖擊,因此取
根據(jù)計算額定靜載荷初選導軌:
選擇漢機江機床廠HJG-D系列滾動直線導軌,其型號為:HJG-D25
基本參數(shù)如下:
表4.3 額定靜載荷初選導軌
額定載荷/N
靜態(tài)力矩/N*M
滑座重量
導軌重量
導軌長度
動載荷
靜載荷
L
(mm)
17500
26000
198
198
288
0.60
3.1
760
滑座個數(shù)
單向行程長度
每分鐘往復次數(shù)
M
4
0.6
4
導軌的額定動載荷N
依據(jù)使用速度v(m/min)和初選導軌的基本動額定載荷 (kN)驗算導軌的工作壽命Ln:
額定行程長度壽命:
導軌的額定工作時間壽命:
導軌的工作壽命足夠.
4.5 聯(lián)軸器的選擇
金屬彈性元件撓性聯(lián)軸器是由各種片狀、圓柱狀、卷板狀等形狀的金屬彈簧,利用金屬彈簧的弱性變形以達到補償兩軸相對偏移 和減振、緩沖功能,構(gòu)成不同結(jié)構(gòu)、性能的撓性聯(lián)軸器。金屬彈性元件比非金屬彈性元件強度高,使用壽命長,傳遞載荷能力大,,適用于高溫工況,彈性模最大且穩(wěn)定。
如圖3.5所示膜片聯(lián)軸器是由幾組膜片(不銹鋼薄板)用螺栓交錯地與兩半聯(lián)軸器聯(lián)接,每組膜片由數(shù)片疊集而成,膜片分為連桿式和不同形狀的整片式。膜片聯(lián)軸呂靠膜片的彈性變形來補償報聯(lián)兩軸的相對位移,是一種高性能的金屬弱性元件撓性聯(lián)軸器,結(jié)構(gòu)較緊湊,強度高,不用潤滑,使用壽命長,無旋轉(zhuǎn)間隙,不受溫度和油污影響,具有耐酸、耐堿、防腐蝕的特點,適用于高速、高溫、有腐蝕介質(zhì)工況環(huán)境的軸系傳動,廣泛用于各種機械裝置的軸系傳動 。
圖4.7 DJM5金屬膜片撓性聯(lián)軸器
5 旋轉(zhuǎn)工作臺機構(gòu)
5.1 電機的選擇
查SEW減速電機的規(guī)格表,選用如下減速電機。
表5.1 選用的電機的詳細參數(shù)
電機額定功率Pm/kW
輸出轉(zhuǎn)速
na/[r/min]
輸出扭矩
Ma/N·m
減速機
速比i
輸出軸許用徑向載荷FRa/N
使用系數(shù)
SEW-fB
減速機
型號
電機
型號
重量/kg
0.37
56
47
22.5
2870
1.55
DT71D4
SF37
14
此型號的電機在一定程度上保證了驅(qū)動功率有一定的盈余,因數(shù)在電機起動時,若機床上有工件,則此時的起動功率會比平時工作時的功率要大,且減速電機本身還有一定的使用系數(shù)。
5.2 同步帶傳動計算
5.2.1 同步帶計算選型
設(shè)計功率是根據(jù)需要傳遞的名義功率、載荷性質(zhì)、原動機類型和每天連續(xù)工作的時間長短等因素共同確定的,表達式如下:
式中 ——需要傳遞的名義功率
——工作情況系數(shù),按表5.2工作情況系數(shù)選取=1.7;
表5.2 工作情況系數(shù)
1) 確定帶的型號和節(jié)距
可根據(jù)同步帶傳動的設(shè)計功率Pd'和小帶輪轉(zhuǎn)速n1,由同步帶選型圖中來確定所需采用的帶的型號和節(jié)距。
其中Pd=0.40kw,n1=56rpm。查表5.3
表5.3 同步帶選型表
選同步帶的型號為H:,節(jié)距為:Pb=8.00mm
1) 選擇小帶輪齒數(shù)z1,z2
可根據(jù)同步帶的最小許用齒數(shù)確定。查表3-3-3得。
查得小帶輪最小齒數(shù)14。
實際齒數(shù)應(yīng)該大于這個數(shù)據(jù)
初步取值z1=34故大帶輪齒數(shù)為:z2=i×z1=1×z1=34。
故z1=34,z2=34。
① 確定帶輪的節(jié)圓直徑d1,d2
小帶輪節(jié)圓直徑d1=Pbz1/π=8.00×34/3.14≈86.53mm
大帶輪節(jié)圓直徑d2=Pbz2/π=8.00×34/3.14≈86.53mm
② 驗證帶速v
由公式v=πd1n1/60000計算得,
s﹤vmax=40m/s,其中vmax=40m/s由表3-2-4查得。
a) 確定帶長和中心矩
根據(jù)《機械設(shè)計基礎(chǔ)》得
所以有:
現(xiàn)在選取軸間間距為取224mm
10、同步帶帶長及其齒數(shù)確定
=()
=
=719.7mm
11、帶輪嚙合齒數(shù)計算
有在本次設(shè)計中傳動比為1,所以嚙合齒數(shù)為帶輪齒數(shù)的一半,即=17。
12、基本額定功率的計算
查基準同步帶的許用工作壓力和單位長度的質(zhì)量表4-3可以知道=2100.85N,m=0.448kg/m。
所以同步帶的基準額定功率為
==0.21KW
表5.4 基準寬度同步帶的許用工作壓力和單位長度的質(zhì)量
13、計算作用在軸上力
=
=71.6N
5.2.2 同步帶的主要參數(shù)(結(jié)構(gòu)部分)
1、同步帶的節(jié)線長度
同步帶工作時,其承載繩中心線長度應(yīng)保持不變,因此稱此中心線為同步帶的節(jié)線,并以節(jié)線周長作為帶的公稱長皮,稱為節(jié)線長度。在同步帶傳動中,帶節(jié)線長度是一個重要
參數(shù)。當傳動的中心距已定時,帶的節(jié)線長度過大過小,都會影響帶齒與輪齒的正常嚙合,因此在同步帶標準中,對梯形齒同步帶的各種哨線長度已規(guī)定公差值,要求所生產(chǎn)的同步帶節(jié)線長度應(yīng)在規(guī)定的極限偏差范圍之內(nèi)(見表5.5)。
表5.5 帶節(jié)線長度表
2、帶的節(jié)距Pb
如圖4-2所示,同步帶相鄰兩齒對應(yīng)點沿節(jié)線量度所得約長度稱為同步帶的節(jié)距。帶節(jié)距大小決定著同步帶和帶輪齒各部分尺寸的大小,節(jié)距越大,帶的各部分尺寸越大,承載能力也隨之越高。因此帶節(jié)距是同步帶最主要參數(shù).在節(jié)距制同步帶系列中以不同節(jié)距來區(qū)分同步帶的型號。在制造時,帶節(jié)距通過鑄造模具來加以控制。梯形齒標準同步帶的齒形尺寸見表4.6。
3、帶的齒根寬度
一個帶齒兩側(cè)齒廓線與齒根底部廓線交點之間的距離稱為帶的齒根寬度,以s表示。帶的齒根寬度大,則使帶齒抗剪切、抗彎曲能力增強,相應(yīng)就能傳動較大的裁荷。
圖5.1 帶的標準尺寸
表5.6 梯形齒標準同步帶的齒形尺寸
4、帶的齒根圓角
帶齒齒根回角半徑rr的大小與帶齒工作時齒根應(yīng)力集中程度有關(guān)t齒根圓角半徑大,可減少齒的應(yīng)力集中,帶的承載能力得到提高。但是齒根回角半徑也不宜過大,過大則使帶
齒與輪齒嚙合時的有效接觸面積城小,所以設(shè)計時應(yīng)選適當?shù)臄?shù)值。
5、帶齒齒頂圓角半徑八
帶齒齒項圓角半徑八的大小將影響到帶齒與輪齒嚙合時會否產(chǎn)生于沙。由于在同步帶傳動中,帶齒與帶輪齒的嚙合是用于非共扼齒廓的一種嵌合。因此在帶齒進入或退出嚙合時,
帶齒齒頂和輪齒的頂部拐角必然會超于重疊,而產(chǎn)生干涉,從而引起帶齒的磨損。因此為使帶齒能順利地進入和退出嚙合,減少帶齒頂部的磨損,宜采用較大的齒頂圓角半徑。但與齒根圓角半徑一樣,齒頂圓角半徑也不宜過大,否則亦會減少帶齒與輪齒問的有效接觸面積。
6、齒形角
梯形帶齒齒形角日的大小對帶齒與輪齒的嚙合也有較大影響。如齒形角霹過小,帶齒縱向截面形狀近似矩形,則在傳動時帶齒將不能順利地嵌入帶輪齒槽內(nèi),易產(chǎn)生干涉。但齒形角度過大,又會使帶齒易從輪齒槽中滑出,產(chǎn)生帶齒在輪齒頂部跳躍現(xiàn)象。
5.2.3 同步帶的設(shè)計
在這里,我們選用梯形帶。帶的尺寸如表5.7。帶的圖形如圖5.2。
表5.7 同步帶尺寸
型號
節(jié)距
齒形角
齒根厚
齒高
齒根圓角半徑
齒頂圓半徑
H
8
40。
6.12
4.3
1.02
1.02
圖5.2 同步帶
5.2.4 同步帶輪的設(shè)計
同步帶輪的設(shè)計的基本要求
1、保證帶齒能順利地嚙入與嚙出
由于輪齒與帶齒的嚙合同非共規(guī)齒廓嚙合傳動,因此在少帶齒頂部與輪齒頂部拐角處的干涉,并便于帶齒滑入或滑出輪齒槽。
2、輪齒的齒廊曲線應(yīng)能減少嚙合變形,能獲得大的接觸面積,提高帶齒的承載能力即在選探輪齒齒廓曲線時,應(yīng)使帶齒嚙入或嚙出時變形小,磨擦損耗小,并保證與帶齒均勻接觸,有較大的接觸面積,使帶齒能承受更大的載荷。
3、有良好的加了工藝性
加工工藝性好的帶輪齒形可以減少刀具數(shù)量與切齒了作員,從而可提高生產(chǎn)率,降低制造成本。
4、具有合理的齒形角
齒形角是決定帶輪齒形的重要的力學和幾何參數(shù),大的齒形角有利于帶齒的順利嚙入和嚙出,但易使帶齒產(chǎn)生爬齒和跳齒現(xiàn)象;而齒形角過小,則會造成帶齒與輪齒的嚙合干涉,因此輪齒必須選用合理的齒形角。
同步帶輪的設(shè)計結(jié)果
同步帶輪用梯形齒,其圖形如圖5.3。
圖5.3 同步帶輪
6 主軸工作機構(gòu)設(shè)計
6.1 電機的選型
參考市場上同類產(chǎn)品,考慮到本機器體積小,功率消耗不大。只是旋轉(zhuǎn)運動。
初步選擇電動機為普通三相異步電動機Y90S-4型。用于一般場合和無特殊要求
90S-4型三相異步電機
功率:1.1KW
電壓:380V
電流:2.7A
絕緣:B
噪音:67 dB(A)
轉(zhuǎn)速 1440 r/min
廣泛適用于不含易燃、易爆或腐蝕性氣體的一般場合和無特殊要求的機械設(shè)備上,如金屬切削機床、泵、風機、運輸機械、攪拌機、農(nóng)業(yè)機械和食品機械等。
Y90S-4型三相異步電動機廣泛適用于不含易燃、易爆或腐蝕性氣體的一般場合和無特殊要求的機械設(shè)備上,如金屬切削機床、泵、風機、運輸機械、攪拌機、 農(nóng)業(yè)機械和食品機械等。 Y90S-4型三相異步電動機是全封閉自扇冷式鼠籠型三相異步電動機,電動機基本系列,符合IEC標準的有關(guān)規(guī)定。 Y90S-4型三相異步電動機具有高效、節(jié)能、起動轉(zhuǎn)矩大、噪聲低、震動小、可靠性高、使用維護方便等特點。
圖6.1 電動機
6.2 同步帶傳動計算
6.2.1 同步帶計算選型
設(shè)計功率是根據(jù)需要傳遞的名義功率、載荷性質(zhì)、原動機類型和每天連續(xù)工作的時間長短等因素共同確定的,表達式如下:
式中 ——需要傳遞的名義功率
——工作情況系數(shù),按表6.1工作情況系數(shù)選取=1.7;
表6.1 工作情況系數(shù)
2) 確定帶的型號和節(jié)距
可根據(jù)同步帶傳動的設(shè)計功率Pd'和小帶鋸轉(zhuǎn)速n1,由同步帶選型圖中來確定所需采用的帶的型號和節(jié)距。
其中Pd=0.63kw,n1=56rpm。查表6.2
表6.2 同步帶的型號和節(jié)距
選同步帶的型號為H:,節(jié)距為:Pb=8.00mm
2) 選擇小帶鋸齒數(shù)z1,z2
可根據(jù)同步帶的最小許用齒數(shù)確定。查表3-3-3得。
查得小帶鋸最小齒數(shù)14。
實際齒數(shù)應(yīng)該大于這個數(shù)據(jù)
初步取值z1=34故大帶鋸齒數(shù)為:z2=i×z1=1×z1=34。
故z1=34,z2=34。
③ 確定帶鋸的節(jié)圓直徑d1,d2
小帶鋸節(jié)圓直徑d1=Pbz1/π=8.00×34/3.14≈86.53mm
大帶鋸節(jié)圓直徑d2=Pbz2/π=8.00×34/3.14≈86.53mm
④ 驗證帶速v
由公式v=πd1n1/60000計算得,
s﹤vmax=40m/s,其中vmax=40m/s由表3-2-4查得。
b) 確定帶長和中心矩
根據(jù)《機械設(shè)計基礎(chǔ)》得
所以有:
現(xiàn)在選取軸間間距為取224mm
10、同步帶帶長及其齒數(shù)確定
=()
=
=719.7mm
11、帶鋸嚙合齒數(shù)計算
有在本次設(shè)計中傳動比為1,所以嚙合齒數(shù)為帶鋸齒數(shù)的一半,即=17。
12、基本額定功率的計算
查基準同步帶的許用工作壓力和單位長度的質(zhì)量表4-3可以知道=2100.85N,m=0.448kg/m。
所以同步帶的基準額定功率為
==0.21KW
表6.3 基準寬度同步帶的許用工作壓力和單位長度的質(zhì)量
13、計算作用在軸上力
=
=71.6N
6.2.2 同步帶的設(shè)計
在這里,我們選用梯形帶。帶的尺寸如表6.4。帶的圖形如圖6.2。
表6.4 同步帶尺寸
型號
節(jié)距
齒形角
齒根厚
齒高
齒根圓角半徑
齒頂圓半徑
H
8
40。
6.12
4.3
1.02
1.02
圖6.2 同步帶
6.3 主軸主軸的設(shè)計
6.3.1 確定主軸主軸最小直徑
(1)先按課本式(15-2)初步估算軸的最小直徑。選取軸的材料為45鋼,調(diào)質(zhì)處理。根據(jù)課本,取,于是得
=112×10.23
根據(jù)切削機床主軸的設(shè)計相關(guān)知識,前面章節(jié)已經(jīng)做了說明,在此不具體說明,
擬定軸的結(jié)構(gòu)如下圖,
軸的受力情況如下圖:
圖6.3 軸的受力圖
6.3.2 求軸上的載荷
從軸的結(jié)構(gòu)圖以及彎矩和扭矩圖中可以看出截面C是軸的危險截面。計算步驟如下:
===4 966.34 N
===3 960.59 N
===2 676.96 N
==3 356.64-2 676.96=679.68 N
==4 966.34×57.1=283 578.014
==2 676.96×57.1=152 854.416
==679.68×71.6=486 65.09
===322 150.53
===287 723.45
表6.5 軸設(shè)計受力參數(shù)
載 荷
水平面H
垂直面V
支反力
=4 966.34 N,=3 960.59 N
=2 676.96 N,=679.68 N
彎矩M
=283 578.014
=152 854.416
=486 65.09
總彎矩
=322 150.53 ,=287 723.45
扭矩T
1 410 990
6.3.3 按彎曲扭轉(zhuǎn)合成應(yīng)力校核軸的強度
進行校核時,通常只校核軸上承受最大彎矩和扭矩的截面(即危險截面C)的強度。根據(jù)課本式(15-5)及表7.2中的數(shù)據(jù),以及軸單向旋轉(zhuǎn),扭轉(zhuǎn)切應(yīng)力為脈動循環(huán)變應(yīng)力,取=0.6,軸的計算應(yīng)力
== MPa=12.4 MPa
前已選軸材料為45鋼,調(diào)質(zhì)處理,查課本表15-1得[]=60MP。因此〈 [],故此軸安全。
6.3.4 精確校核軸的疲勞強度
(1)判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用,雖然鍵槽、軸肩及過渡配合所引起的應(yīng)力集中均將消弱軸的疲勞強度,但由于軸的最小直徑是按扭轉(zhuǎn)強度較為寬裕確定的,所以截面A,Ⅱ,Ⅲ,B均無需校核。
從應(yīng)力集中對軸的疲勞強度的影響來看,截面Ⅳ和Ⅴ處過盈配合引起的應(yīng)力集中最嚴重,從受載來看,截面C上的應(yīng)力最大。截面Ⅴ的應(yīng)力集中的影響和截面Ⅳ的相近,但是截面Ⅴ不受扭矩作用,同時軸徑也較大,故不必做強度校核。截面C上雖然應(yīng)力最大,但是應(yīng)力集中不大(過盈配合及鍵槽引起的應(yīng)力集中均在兩端),而且這里軸的直徑最大,故截面C也不必校核,截面Ⅵ和Ⅶ顯然更不必要校核。由課本第3章的附錄可知,鍵槽的應(yīng)力集中較系數(shù)比過盈配合的小,因而,該軸只需校核截面Ⅳ左右兩側(cè)即可。
(2)截面Ⅳ左側(cè)
抗彎截面系數(shù) W=0.1=0.1=61 412.5
抗扭截面系數(shù) =0.2=0.2=122 825
截面Ⅶ的右側(cè)的彎矩M為
=90 834.04
截面Ⅳ上的扭矩為 =1 410 990
截面上的彎曲應(yīng)力
=1.48 MPa
截面上的扭轉(zhuǎn)切應(yīng)力
=11.49 MPa
軸的材料為45鋼,調(diào)質(zhì)處理。由課本表15-1查得
截面上由于軸肩而形成的理論應(yīng)力集中系數(shù)及按課本附表3-2查取。因
,
經(jīng)插值后查得
=1.9,=1.29
又由課本附圖3-1可得軸的材料的敏性系數(shù)為
,=0.88
故有效應(yīng)力集中系數(shù)按式(課本附表3-4)為
=1.756
由課本附圖3-2的尺寸系數(shù);由課本附圖3-3的扭轉(zhuǎn)尺寸系數(shù)。
軸按磨削加工,由課本附圖3-4得表面質(zhì)量系數(shù)為
軸為經(jīng)表面強化處理,即,則按課本式(3-12)及式(3-12a)得綜合系數(shù)為
又由課本及3-2得碳鋼的特性系數(shù)
,取
,取
于是,計算安全系數(shù)值,按課本式(15-6)(15-8)則得
S===65.66
S===16.9
收藏