喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
==============================================喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
==============================================
Proceedings of the International Conference BALTTRIB2007 APPLICATION OF A NEW TEST PROCEDURE FOR MECHANICAL TESTING OF HYDRAULIC FLUIDS J. Schmidt, D. Krause Institute for Product Development and Mechanical Engineering Design, Hamburg University of Technology, Germany Abstract: This paper describes a friction and wear test in a newly developed test machine, which was developed at the TU Hamburg-Harburg to investigate the lubricating capability of hydraulic fluids. The aim of the development of the new test procedure is a better representation of the tribological contacts and effects in fluid power machinery. The investigation of the lubrication capabilities of hydraulic fluids using a line contact showed, that a distinction between different fluids regarding their lubrication capabilities can be made, using friction-, wear- and erosion tests (galling). The high reproducibility of the boundary conditions during different tests was achieved by steady design modifications of the test rig and the development of a computer program for fully-automatic control of the test procedure. The developed test machine fulfils the requirements of a simple test procedure and simply shape of test specimen, which could be produced from principally every type of material and production machines, existing in every company that produce fluid power components. Keywords: Hydraulic, fluid, lubrication, testing 1. INTRODUCTION A very important feature of a hydraulic fluid is its potential to separate the surfaces of a loaded tribo- contact and by this to reduce friction and wear in this contact. The most reliable test to investigate the lubricating capability of a hydraulic fluid is the field test, i.e. the application of the fluid under typical operating conditions and for typical operating periods. For many reasons field tests are time consuming and costly, and the operating condition of different applications typically will be very different so that results from one application might not be transferable to another application. This situation leads to the necessity for fluid producers as well as for the producers of hydrostatic machinery to test their product in a laboratory test before they go for a field test. It should be clear that laboratory tests are only helpful if they reproduce the situation in the tribo-contact of the real machine to a high extend. The Institute for Product Development and Mechanical Engineering Design at the Hamburg University of Technology has developed a new test procedure and a test machine to investigate the lubricating capability of hydraulic fluids 1. In future this test possibly can replace the vane pump test according to DIN 51389 2. The aim of the project was to find a test procedure which reproduces the totality of wear relevant tribological effects in hydrostatic machinery as good as possible, using simply shaped test specimen and a test machine, which allows an easy measurement of the mechanical parameters to derive from these friction and wear. The load conditions of the tribo-systems within a hydrostatic machine (contact pressure, type of relative movement) and velocity and destructor and the properties of the contact partners define the parameters in the contact zone (temperature and geometry) which have the main impact on friction coefficient, critical load and wear performance of the tribo-system. The test procedure and test machine was developed by a systematic approach in research projects DGMK 514 3, 514-1 4 and 610 5. 2. PRINCIPAL ARANGEMENT OF THE TEST APPARATUS The aim of the development of a new test procedure was to achieve y reproducible quantitative test results with high accuracy, y simple test specimen, which do not require special manufacturing technologies, y a test procedure which can be automated and y low energy consumption, small volume of test fluid and short test time. A detailed analysis of the tribo-contacts in hydrostatic machines was the base for a specification for this new test procedure and machine. Using design methodology and systematic design approach a test principal was found, which is shown in Fig. 1. The arrangement of the test apparatus allows the investigation of line contact and area contact. During the research project it was found, that the line contact is the more interesting one and generates data which allow to classify lubricating capabilities of different fluids; this is the reason why the majority of the tests was only using data from the line contact. To quantify the lubricating capability of a hydraulic fluid the following parameters are used: y p HD,crit critical pressure which leads to adhesive material removal (“galling”), y Ex,average average friction coefficient in the line contact, y V line wear volume of the test specimen slider. The accuracy and the reproducibility of these parameters define to a high extend how good the tested fluids can be classified as low, medium and high lubricating fluids. Exact measurements of the mechanical parameters as speed, torque and pressure, the possibility to calculate contact forces having friction in guiding devices and bearings in the calculation and a sophisticated method to measure and calculate the wear volume at the slider are the basis to achieve adequate results. During the research project a number of design changes have been made with the test machine to improve the accuracy and reproducibility of the measurements. 3. TEST CONDITIONS To define the optimal test conditions for the short term and long term test (short term test is the test for critical load, long term test is the test for friction coefficient and wear volume) a great number of tests were done. During these tests it was found that the starting process for the test is of significant influence on the results of the tests. 3.1 Start procedure The parameters of the starting procedure have to be such that initial damages of the test specimen are avoided and a controlled running in of the line contact is achieved. An automation of this starting procedure lead to a significant improvement of the following tests. 3.2 Short term test procedure Short term tests are used to find the critical pressure p HD,crit , which is the pressure when spontaneous and intensive adhesive material transfer between the sliding contacts starts galling. The pressure on the piston produces a critical pressure within the tribo-contact at which the lubricating film between the contacting services disappears and mixed friction changes to friction of solids. Figure 2 shows the developing of the test parameters versus time for a typical short term test. piston test specimen slider (line contact) cylinder (excentric) shaft with excentric shaft end test chamber Figure 1. MPH test rig - principal arrangement of the test apparatus 3.3 Endurance test procedure The endurance test is used to find the fluids specific work friction coefficient of the line contact and the volume loss of the test specimen slider. The load of the tribo-contact is constant for all tests; load means the average pressure on the piston which is held constant during the hole test to produce a constant force in the line contact between slider and cylinder (excentric). Figure 3 shows the developing of the test parameters within the endurance test. end of start procedure test duration h pr es sur e over piston P HD b a r tempe r atur e tr ibo-conta c t EX C tempe r ature tank tan k C torque ex centric T EX Nm aver age fric tion coeffic i e n t EX - Figure 3. Typical developing of the test parameters within a endurance test galling“ T EX =0,5 beginning of short term test end of start procedure test duration h p r essu re o v er p i st o n P HD b ar t e m p er at u r e t r ib o - c o n t ac t EX C t e m p erat u r e t a n k ta n k C t o r q u e ex cen t r ic T EX N m aver a g e f r ict i o n co ef f i cie n t EX - Figure 2. Typical developing of the test parameters within a short term test 4. RESULTS FROM COMPLETET TEST SERIES Within the project mineral oil based hydraulic fluids of HL- and HLP-type and synthetic esters of HEES-types were tested; at this time the tests are extended to mineral and ester based multigrade motor oils and gear oils. Main task of the by now completed tests was to demonstrate different lubricating capabilities of these types of fluids as they should be expected for the different types. The most important point was to demonstrate that the results of multiple tests with the same fluid are in a narrow range, i.e. show small deviations from an average value. This paper reports about the test results for six different types of hydraulic fluids, one fluid of HEES-type, three fluids of type HLP and two fluids of type HL. All fluids had corrosion and anti-aging additives, the HEES-type and the HLP- type fluids were equipped with ep- and aw-additive packages in different concentrations. The table in Fig. 4 gives information about the absolute values of the tests of a typical test range. It is important to see that the critical pressure and the average friction coefficient of three test runs are more or less close to an average value while the volume loss of the slider shows bigger deviations for different tests with the same fluid under the exact same conditions. It can also be seen that there is a certain correspondence between critical load, average friction coefficient and volume loss. On the other hand the table shows, that a relative comparison of the fluids lubricating capabilities is not very easy, because a great number of test results have to be taken into account. Therefore a different presentation of the results has been developed, which is also shown in Fig. 4. The diagram shows the isometric presentation of a results base. In this figure the ellipsoids represent the limits of the measured values for the different fluids; all values are referred to the HF-1 fluid as a reference. HF-2 (HL) HF-6 (HEES) HF-4 (HLP) HF-1 (HL) HF-3 (HLP) HF-5 (HLP) r e l. f r ic ti o n c o e ff ic ie n t % re l. c ri t. p re ss u re % r e l . w e a r v o l u m e % Figure 4. Absolute values and isometric representation of the test results Figure 5 shows the projections of the three dimensional diagram of figure 4 and demonstrate clearly that the measurement with the MPH test rig allow a clear differentiation of not only fluids of different classes but also of fluids within one class. HF-2 (HL) HF-6 (HEES) HF-4 (HLP) HF-1 (HL) HF-3 (HLP) HF-5 (HLP) rel. Reibungskoeffizient % HF-1: reference fluid r e l . w e a r v o l u m e % rel. friction coefficient % HF-2 (HL) HF-6 (HEES) HF-4 (HLP) HF-1 (HL) HF-3 (HLP) HF-5 (HLP) HF-1: reference fluid rel. crit. pressure % r e l . w e a r v o l u m e % HF-2 (HL) HF-6 (HEES) HF-4 (HLP) HF-1 (HL) HF-3 (HLP) HF-5 (HLP) HF-1: reference fluid r e l . f r i c t i o n c o e f f i c i e n t % rel. crit. pressure % Figure 5. Projections of the three dimensional diagram (see fig.4) of the result parameters CONCLUSION The results of a high number of tests within the MPH-project have shown that it is possible to differentiate the lubricating capability of hydraulic fluids with the MPH test rig. With the design improvement of the test rig and the development of a fully automatic test rig control the reproducibility of test results could be improved. Looking to recent tests with the actual test rig it could be seen, that the values for friction coefficient and critical pressure do not differ more than 10% from the average. The wear volume shows bigger deviations within a test sample with a maximum of 15 % which possibly can be reduced by more accurate measurement techniques 6, 7. Reproducibility of test results was a major point for the MPH-project. The achieved accuracies must be seen in comparison to accuracies requirements of other tests which are used to test hydraulic fluids. The vane pump tests and also the FZG-test 8 do not define a minimum number of test runs and no accuracies in the test results. According to the standards in both tests only one test run is necessary for a classification of a fluid. This leads to the conclusion that test results with the MPH test rig and procedure may give better reliable data about the lubrication capability than other test procedures used assuming at minimum 3 test runs per fluid. REFERENCES 1 Kessler, M., Entwicklung eines Testverfahrens zur mechanischen Prfung von Hydraulikflssigkeiten, Dissertation, Fortschritt-Berichte VDI, Reihe 1, Nr. 335, 2000. 2 DIN 51389, Mechanische Prfung von Hydraulikflssigkeiten in der Flgelzellenpumpe, Deutsches Institut fr Normung e.V., Beuth Verlag Berlin, 1982. 3 Kessler, M., Feldmann, D.G., Mechanische Prfung von Hydraulikflssigkeiten, DGMK Forschungsbericht 514, Hamburg, Juli 1999. 4 Kessler, M., Feldmann, D.G., Mechanische Prfung von Hydraulikflssigkeiten II, DGMK Forschungsbericht 514-1, Hamburg, Sept. 2001. 5 Schmidt, J.; Feldmann, D.G.; Padgurskas, Mechanische Prfung von Hydraulikflssigkeiten, DGMK Forschungsbericht 610, Hamburg, 2006. 6 Feldmann, D.G., Padgurskas, J., Analysis of the Lubrication Capabilities of Hydraulic Fluids using a Test Method with Line Contact, Engineering Materials & Tribology 2004, Riga, 23.-24. Sept. 2004. 7 Schmidt, J., Feldmann, D.G., Padgurskas, J., Application of a new test procedure for mechanical testing of hydraulic fluids, 5. International Fluid Power Conference, Vol. 2, p.269-280, Aachen, 20.-22. March 2006. 8 DIN 51354, FZG-Zahnrad-Verspannungs-Prfmaschine, Deutsches Institut fr Normung e.V., Beuth Verlag Berlin, 1990. Author for contacts: Dr.-Ing. Jens Schmidt, Institute for Product Development and Mechanical Engineering Design, Hamburg University of Technology, Denickestrae 17, 21073 Hamburg, Germany. Phone: +49 40 428783131, Fax +49 40 428782296, E-Mail: jens.schmidttu-harburg.de. 湘潭大學(xué)
湘潭大學(xué)興湘學(xué)院
畢業(yè)設(shè)計說明書
題 目: 液壓試驗臺設(shè)計
學(xué) 院: 興湘學(xué)院
專 業(yè):機械設(shè)計制造及其自動化
學(xué) 號: 2010963021
姓 名: 劉旋
指導(dǎo)教師: 朱石沙
完成日期: 2014.5.10
湘潭大學(xué)興湘學(xué)院
畢業(yè)論文(設(shè)計)任務(wù)書
論文(設(shè)計)題目: 液壓試驗臺設(shè)計
學(xué)號: 2010963021 姓名: 劉旋 專業(yè): 機械設(shè)計制造及其自動化
指導(dǎo)教師: 朱石沙 系主任: 劉柏希
一、主要內(nèi)容及基本要求
查閱與試驗臺設(shè)計相關(guān)的文獻資料,了解國內(nèi)外有關(guān)試驗臺的設(shè)計動向,掌握液壓實驗臺以及實驗項目的相關(guān)內(nèi)容,完成液壓實驗臺的設(shè)計。
1、查閱相關(guān)資料,了解以前液壓試驗臺設(shè)計的不足之處;
2、設(shè)計一種構(gòu)緊湊, 占地小、投資少、移動靈活綜合液壓實驗臺及其相關(guān)液壓基本回路;
3、2*A0圖紙;
4、撰寫畢業(yè)設(shè)計說明書。
5、外文文獻翻譯,字?jǐn)?shù)3000字以上。
二、重點研究的問題
液壓基本回路的設(shè)計
三、進度安排
序號
各階段完成的內(nèi)容
完成時間
1
查閱資料、調(diào)研
第1-2周
2
開題報告、制訂設(shè)計方案
第3周
3
方案(設(shè)計)
第4-5周
4
綜合液壓實驗臺及其相關(guān)液壓基本回路設(shè)計
第6-7周
5
寫出初稿,中期檢查
第8-9周
6
修改,寫出第二稿
第10-11周
7
寫出正式稿
第12-13周
8
答辯
第14周
四、應(yīng)收集的資料及主要參考文獻
索寶麗.基于虛擬技術(shù)的液壓綜合實驗臺的研究與應(yīng)用[D].山東大學(xué),2012.
張軍花.多功能液壓實驗臺優(yōu)化設(shè)計及數(shù)字化仿真研究[D].中國地質(zhì)大學(xué)(武漢),2011.
桂強.液壓伺服系統(tǒng)實驗臺測試系統(tǒng)的研制[D].華中科技大學(xué),2011.
湘潭大學(xué)興湘學(xué)院
畢業(yè)論文(設(shè)計)評閱表
學(xué)號 2010963021 姓名 劉旋 專業(yè) 機械設(shè)計制造及其自動化
畢業(yè)論文(設(shè)計)題目: 液壓試驗臺設(shè)計
評價項目
評 價 內(nèi) 容
選題
1.是否符合培養(yǎng)目標(biāo),體現(xiàn)學(xué)科、專業(yè)特點和教學(xué)計劃的基本要求,達到綜合訓(xùn)練的目的;
2.難度、份量是否適當(dāng);
3.是否與生產(chǎn)、科研、社會等實際相結(jié)合。
能力
1.是否有查閱文獻、綜合歸納資料的能力;
2.是否有綜合運用知識的能力;
3.是否具備研究方案的設(shè)計能力、研究方法和手段的運用能力;
4.是否具備一定的外文與計算機應(yīng)用能力;
5.工科是否有經(jīng)濟分析能力。
論文
(設(shè)計)質(zhì)量
1.立論是否正確,論述是否充分,結(jié)構(gòu)是否嚴(yán)謹(jǐn)合理;實驗是否正確,設(shè)計、計算、分析處理是否科學(xué);技術(shù)用語是否準(zhǔn)確,符號是否統(tǒng)一,圖表圖紙是否完備、整潔、正確,引文是否規(guī)范;
2.文字是否通順,有無觀點提煉,綜合概括能力如何;
3.有無理論價值或?qū)嶋H應(yīng)用價值,有無創(chuàng)新之處。
綜
合
評
價
論文選題符合培養(yǎng)目標(biāo)要求,能體現(xiàn)學(xué)科專業(yè)特點,達到了綜合訓(xùn)練的目的。該生具有較強的文獻查閱、資料綜合歸納整理的能力,能在設(shè)計中熟練運用所學(xué)知識,設(shè)計方案可行,工作量飽滿,論文質(zhì)量符合本科生畢業(yè)設(shè)計要求。
同意參加答辯。
評閱人:
2010年5月 日
湘潭大學(xué)興湘學(xué)院
畢業(yè)論文(設(shè)計)鑒定意見
學(xué)號: 2010963021 姓名 劉旋 專業(yè): 機械設(shè)計制造及其自動化
畢業(yè)論文(設(shè)計說明書) 28 頁 圖 表 23 張
論文(設(shè)計)題目: 液壓實試驗臺的設(shè)計
內(nèi)容提要:本論文所研究設(shè)計的液壓試驗臺廣泛應(yīng)用于機床、工程機械、冶金機
械、塑料機械。隨著液壓機械自動化程度不斷提高,液壓、氣動元件應(yīng)用數(shù)量急劇增
加,元件小型化、系統(tǒng)集成化是必然趨勢。本文闡述了一種液壓臺的設(shè)計、工作原理、
基本回路及主要技術(shù)指標(biāo)。它綜合了液壓閥和液壓缸專用試驗臺的性能,達到了一機
多用的目的,本試驗臺具有測試可靠、制造容易、維護方便、成本低廉等特點。
指導(dǎo)教師評語
該同學(xué)對待畢業(yè)設(shè)計任務(wù)認(rèn)真負(fù)責(zé),積極查閱資料,認(rèn)真思考解決問題的方法,并能主動和老師積極探討。具備綜合運用知識去確定設(shè)計方案,獨立解決設(shè)計中問題的能力。所設(shè)計的制缽機的設(shè)計原理正確,控制方法得當(dāng)。所繪制圖紙基本達到工程圖的水平,所完成的畢業(yè)設(shè)計說明書條理清楚、計算正確,文字基本流暢。整個畢業(yè)設(shè)計工作量達到要求,完成質(zhì)量較高,達到學(xué)士學(xué)位論文要求。
同意參加答辯,推薦畢業(yè)設(shè)計成績等級為“中等”。
指導(dǎo)教師:
年 月
答辯簡要情況及評語
根據(jù)答辯情況,答辯小組同意其成績評定為:
答辯小組組長:
年 月 日
答辯委員會意見
經(jīng)答辯委員會討論,同意該畢業(yè)論文(設(shè)計)成績評定為:
答辯委員會主任:
年 月 日
目 錄
摘要 1
Abstract. 2
1 緒論 3
1.1 課題背景及目的 3
1.2 國內(nèi)外研究狀況 3
1.2.1 國內(nèi)外發(fā)展現(xiàn)狀 3
1.2.2 發(fā)展趨勢 5
1.2.2.1 以計算機軟件為平臺,實現(xiàn)液壓傳動實驗的虛擬化 5
1.2.2.2 以計算機網(wǎng)絡(luò)為平臺實現(xiàn)液壓傳動實驗的網(wǎng)絡(luò)化 5
1.2.2.3 利用PLC編程實現(xiàn)液壓傳動實驗的智能化 5
1.2.2.4 以液壓故障診斷系統(tǒng)為平臺,實現(xiàn)液壓系統(tǒng)的檢測與故障分析 5
1.2.2.5 利用純水液壓傳動節(jié)約能源、保護環(huán)境 6
1.3 論文構(gòu)成及研究內(nèi)容 6
2 液壓試驗臺基本設(shè)計計算 7
2.1 液壓系統(tǒng)設(shè)計步驟與設(shè)計要求 7
2.2 初選系統(tǒng)工作壓力 7
2.3 計算液壓缸的主要結(jié)構(gòu)尺寸 7
2.4 制定基本方案和繪制液壓系統(tǒng)圖 10
2.4.1 制定基本方案 10
2.4.2 液壓試驗臺系統(tǒng)原理圖 11
3 液壓試驗臺選用設(shè)計 14
3.1 液壓泵的選型與安裝 14
3.1.1 液壓泵工作壓力的確定 14
3.1.2 液壓泵流量的確定 14
3.1.3 液壓泵的安裝方式 14
3.2 電動機功率的確定 17
3.3 液壓閥的選型與安裝 17
3.4 液壓油缸的選型 19
3.5 液壓油管的選型 19
3.6 液壓油箱的設(shè)計 20
3.6.1 液壓油箱有效容積的確定 20
3.6.2 液壓油箱的散熱計算 20
3.6.3 液壓油箱的容量計算 21
3.6.4 液壓油箱的結(jié)構(gòu)設(shè)計 21
4 簡易輕載壓力機設(shè)計 25
4.1 概述 25
4.2 簡易壓力機設(shè)計 26
5 結(jié)論 27
參考文獻 28
致謝 29
液壓試驗臺設(shè)計
摘要:液壓系統(tǒng)的組成、功能日益復(fù)雜,因而發(fā)生故障的機率也隨之增多。液壓系統(tǒng)的故障具有隱蔽性、變換性和誘發(fā)因素的多元性,所以在故障診斷和排除時,不但需要有熟練的技術(shù)人員,同時還要有完善的檢測設(shè)備。檢測液壓元件性能參數(shù)的試驗設(shè)備多為性能單一的液壓試驗臺。而且一般為液壓件生產(chǎn)廠家和研究所專用。從使用方面來看,一旦液壓系統(tǒng)發(fā)生故障,常常需檢測多種液壓元件的技術(shù)指標(biāo),才能找出故障部位和根源,達到及時修理的目的。本文闡述了一種液壓試驗臺的設(shè)計、工作原理及主要技術(shù)指標(biāo)。它綜合了液壓閥和液壓缸專用試驗臺的性能,達到了一機多用的目的,該試驗臺具有測試可靠、制造容易、維護方便、成本低廉等特點。
關(guān)鍵詞:液壓試驗臺;油箱;液壓閥;液壓缸;壓力機
THE DESIGN OF HYDRAULIC TEST BENCH
Abstract:The components and functions of hydraulic system become more and more complex , and thus the probability of failure also increase. Hydraulic system failure with elusive, transformation-induced and inducing factor multiplicity, so in the fault diagnosis and rule out the possibility, not only the need for skilled personnel, but also have a well-developed testing equipment, most of the test equipments that used for detecting the performance parameters of hydraulic components are a single hydraulic test bed. And generally to hydraulic parts manufacturers and research institutes dedicated. From the perspective of using, once the hydraulic system failure, are often required to detect a wide range of hydraulic components of the technical indicators to identify the root causes of fault location and to achieve the purpose of timely repairs. In this paper we explain the design of one kind of hydraulic test bench, working principle and the main technical indicators. It combinated the performance of hydraulic valves and hydraulic cylinders dedicated test-bed, to become multiple use, the test bench with characteristics of test reliable, easy to manufacture, easy maintenance, low cost and so on.
Key words: hydraulic test stand; tank; hydraulic valve; hydraulic cylinder; forcing press
1 緒論
1.1 課題背景及目的
隨著液壓工業(yè)的發(fā)展,液壓技術(shù)在各種機械中發(fā)揮著越來越重要的作用。由于液壓系統(tǒng)的組成、功能日益復(fù)雜,因而發(fā)生故障的機率也隨之增多。液壓系統(tǒng)的故障具有隱蔽性、變換性和誘發(fā)因素的多元性,所以在故障診斷和排除時,不但需要有熟練的技術(shù)人員,同時還要有完善的檢測設(shè)備。檢測液壓元件性能參數(shù)的試驗設(shè)備多為性能單一的液壓試驗臺,而且一般為液壓件生產(chǎn)廠家和研究所專用。從使用方面來看,一旦液壓系統(tǒng)發(fā)生故障,常常需檢測多種液壓元件的技術(shù)指標(biāo),才能找出故障部位和根源,達到及時修理的目的。同時液壓傳動課程是各類工科大學(xué)及職業(yè)院校機械、機電類專業(yè)學(xué)生的重要課程,而液壓試驗臺則是進行液壓傳動課教學(xué)必不可少實驗設(shè)備。為了滿足課程教學(xué)需要,拓寬學(xué)生知識面,提高現(xiàn)代工業(yè)技術(shù)應(yīng)用能力,我們設(shè)計了一種價格低廉,制造容易,于數(shù)據(jù)檢測、演示和裝置檢驗為一身的液壓實驗臺。
1.2 國內(nèi)外研究狀況
1.2.1 國內(nèi)外發(fā)展現(xiàn)狀
液壓行業(yè)的科學(xué)研究和工業(yè)生產(chǎn)的速度發(fā)展對試驗提出了新的要求和先進的測試技術(shù),以獲得較高的試驗精度并實現(xiàn)測量自動化。試驗臺是檢驗產(chǎn)品的性能,驗證產(chǎn)品質(zhì)量的關(guān)鍵設(shè)備,目前國內(nèi)液壓行業(yè)生產(chǎn)廠均有相應(yīng)產(chǎn)品的實驗臺,但是,試驗項目、精度大部分不能滿足試驗方法標(biāo)準(zhǔn):GB/T1562-1995的要求,特別是一些動態(tài)的性能得不到檢驗。此外,人工操作效率低,勞動強度大,人為因素嚴(yán)重影響試驗結(jié)果。而且就是現(xiàn)有的設(shè)備只是單一的檢測項目,而不能在一臺設(shè)備上同時對多個液壓元件進行試驗。
國內(nèi)狀況:普通的試驗臺設(shè)備簡陋,完全通過人手工操作方式進行試驗和記錄數(shù)據(jù),這樣導(dǎo)致試驗標(biāo)準(zhǔn)不易掌握,試驗方法缺乏一致性,操作人員勞動強度大,達不到通過試驗最終控制和提高產(chǎn)品質(zhì)量的目的。國內(nèi)現(xiàn)有的超聲檢測,針對溫度、流速、壓力對超聲傳播速度的影響,建立溫度—壓力—聲速模型在溫度、壓力、流量大范圍變化條件下對流量和壓力的測量。它能夠克服了傳統(tǒng)聲速流量儀器對溫度敏感且不能有流量大范圍變化場合的不足。而現(xiàn)在普遍使用的超聲測量試儀器無論采用頻差、相差或聲差都必須在液體聲速變化范圍不大的前提下進行,而液壓系統(tǒng)中,液壓油的溫度、壓力的變化范圍都很大,如溫度變化–40℃~60℃,壓力變化從0—32MPa。這兩個因素會引起聲速在大范圍內(nèi)變動,由此引起的影響,用超聲測試液壓元件對測量的精度能夠滿足。同時液壓元件系統(tǒng)CAT的研究應(yīng)用比較廣泛,CAT試驗臺的功能比較單一,不能滿足綜合試驗的要求。另外還有計算機輔助測試CAT,它是由硬件和軟件所組成的,針對測量信號復(fù)雜,為減小信號的干擾,采取數(shù)據(jù)處理方法和系統(tǒng)抗干擾措施,使測試數(shù)據(jù)更加真實、可靠,較為全面地滿足對被測液壓元件的測試要求。在實驗臺方面,傳統(tǒng)液壓實驗臺實驗回路單一,實驗效果較差,大多通過對泵和閥的控制實現(xiàn)液壓傳動,主要是由實物液壓元件所組成的,導(dǎo)致了實驗臺的重量和體積都較大,并且由于實物元件和管路不透明,學(xué)生觀察不到其內(nèi)部的結(jié)構(gòu)、液流及動作等情況。同時,由于元件位置不能隨意變動,使得所實現(xiàn)的液壓回路單一,不利于培養(yǎng)學(xué)生的創(chuàng)造能力,直接影響了實驗效果。其次,傳統(tǒng)液壓實驗臺自動化程度低,由于傳統(tǒng)的液壓實驗臺多采用繼電器等元件作為控制系統(tǒng)的控制元件,其成本高;實現(xiàn)功能少,耗電高,使用壽命短,電路連接繁瑣。并且還存在可靠性和靈活性差,自動化程度低等缺點。還有傳統(tǒng)液壓實驗臺液壓油漏泄容易污染實驗場所,在液壓傳動系統(tǒng)中,通常以礦物型液壓油作為工作介質(zhì),既消耗大量寶貴的石油資源,加重環(huán)境污染,又易泄漏、易燃燒,并且泄漏出的油液還會污染實驗場所,同時也會導(dǎo)致部分學(xué)生怕臟而不肯動手。[1]
國外狀況:日本島津VEH型及美國STEX公司的HVL型液壓萬能試驗機均采用電液伺服及閥控制雙向油缸負(fù)荷、變形、位移控制由電液伺服閉環(huán)控制,同時具有電子測試和計算機數(shù)據(jù)處理功能,電液伺服閥的優(yōu)點是靜動態(tài)性能良好,分辨率高,滯環(huán)線性度高,工作范圍廣,更適合動態(tài)電液伺服試驗機。其缺點是:由于靜態(tài)液壓萬能試驗機上未能發(fā)揮其特點,使其造價提高,抗污染能力變差,工作噪聲較大,油溫升高快,有些還需要水冷卻。西德申克公司的UPV液壓萬能試驗機,其控制原理是由速度控制器控制力矩而帶動壓力控制閥,施加負(fù)載,并且有速度電流反饋,是一種傳統(tǒng)的控制方式。在本試驗臺上進行產(chǎn)品出廠測試,同時也可進行行業(yè)檢測,采用調(diào)速電機、加載、壓力、流量、轉(zhuǎn)速、控力、溫度、自動控制和顯示,被測數(shù)據(jù)(參數(shù))實現(xiàn)自動采集實時顯示。液壓缸、液壓泵、流量閥、壓力閥、溢流閥等進行綜合的測試。該試驗臺試驗范圍廣,可以滿足各種型號的液壓元件的試驗,結(jié)構(gòu)緊湊,操作方便,整個系統(tǒng)人機界面友好,可以進行各種試驗,負(fù)載效率試驗,耐久性試驗等,實現(xiàn)了測量控制參數(shù)設(shè)定,記錄和數(shù)據(jù)處理的全自動化,不僅減輕了操作人員的勞動強勞動強度。改善了操作環(huán)境,而且達到了較高的試驗效率和測量精度,通過對各種液壓元件的預(yù)測量可以看出,試驗臺及其測控系統(tǒng)的立意和設(shè)計都比較新穎,合理和成功,取得了良好的效率。此外,在減輕試驗人員的勞動強度,改善工作條件方面,綜合測試系統(tǒng)都具有無可比擬的優(yōu)點。但不足之處是:系統(tǒng)需要的設(shè)備及投資較多,設(shè)備及元件的可靠行對試驗工作的影響較大,設(shè)備的使用,維修和編程比較復(fù)雜,需要一定的專職人員。
1.2.2 發(fā)展趨勢
1.2.2.1 以計算機軟件為平臺,實現(xiàn)液壓傳動實驗的虛擬化
虛擬實驗的概念是從虛擬現(xiàn)實(Virtual Reality,簡稱VR)的概念中衍生出來的。從本質(zhì)上講,VR系統(tǒng)是對現(xiàn)實環(huán)境的仿真,因此,仿真技術(shù)無論對于虛擬現(xiàn)實和虛擬實驗都是關(guān)鍵性的技術(shù)。虛擬儀器(Virtual Instrument,簡稱VI)在20世紀(jì)80年代末由美國研制成功,它開創(chuàng)了儀器使用者可以成為儀器設(shè)計者的新時代。虛擬儀器作為儀器技術(shù)與計算機技術(shù)深層次結(jié)合的產(chǎn)物,是全新概念的儀器,是對傳統(tǒng)儀器概念的重大突破,虛擬儀器采用相應(yīng)原理代替?zhèn)鹘y(tǒng)儀器進行模擬實驗,用戶利用軟面板實現(xiàn)數(shù)據(jù)采集、數(shù)據(jù)分析和數(shù)據(jù)顯示功能,實現(xiàn)了測試的自動化、智能化,體現(xiàn)了軟件就是儀器的設(shè)計思想。虛擬儀器使用戶能夠根據(jù)自己的需要定義儀器功能,利用虛擬儀器,用戶可以更好的組建自己所需的測試系統(tǒng)。由于PC機強大的數(shù)據(jù)處理能力,借助于一塊通用的數(shù)據(jù)采集卡,用戶可以利用軟件構(gòu)造幾乎任意功能的儀器。
1.2.2.2 以計算機網(wǎng)絡(luò)為平臺實現(xiàn)液壓傳動實驗的網(wǎng)絡(luò)化
隨著計算機網(wǎng)絡(luò)及計算機通信技術(shù)的開發(fā),網(wǎng)絡(luò)實驗平臺隨之提出,教學(xué)和實驗環(huán)境正在發(fā)生巨大變化,它的開放性、共享性變得越來越重要。目前網(wǎng)絡(luò)教學(xué)系統(tǒng)己經(jīng)得到廣泛應(yīng)用,通過計算機網(wǎng)絡(luò)進行遠程課堂教育,已經(jīng)是比較成熟的技術(shù),國內(nèi)外多所大學(xué)已經(jīng)開辦了遠程教育。近年來,網(wǎng)絡(luò)的使用越來越得到廣泛重視,在大學(xué)里或大學(xué)之間利用網(wǎng)絡(luò)技術(shù),通過遠程登陸相互共用各具特色的實驗設(shè)備,使之成為一個教學(xué)實驗的共享系統(tǒng),是當(dāng)今實驗教學(xué)發(fā)展的必然趨勢。使用戶能在不同地點、不同時間選擇完成所需要的實驗與實驗研究,不僅可以節(jié)約時間,還將節(jié)約人力、物力等方面的資源。因此,實驗資源共享,對能夠最大限度發(fā)揮儀器設(shè)備的使用率、開創(chuàng)新的實驗方法、提高實驗水平都有著十分重要的意義。
1.2.2.3 利用PLC編程實現(xiàn)液壓傳動實驗的智能化
利用先進的控制技術(shù)開發(fā)新的實驗臺或?qū)υ械膶嶒炁_進行改進,將液壓技術(shù)與先進的控制技術(shù)結(jié)合,實驗臺自動化程度大大提高。
1.2.2.4 以液壓故障診斷系統(tǒng)為平臺,實現(xiàn)液壓系統(tǒng)的檢測與故障分析
液壓故障診斷專家系統(tǒng)是采用智能型的診斷方法,是一種基于液壓領(lǐng)域眾多著名專家的理論知識和實踐經(jīng)驗,能仿真人類專家解決液壓系統(tǒng)領(lǐng)域故障的智能計算機推理系統(tǒng)。
1.2.2.5 利用純水液壓傳動節(jié)約能源、保護環(huán)境
德國的Hauhinco機械廠,于1995年就研制成功淡水徑向柱塞泵陶瓷閥芯的水壓滑閥產(chǎn)品;Tampere大學(xué)等聯(lián)合開發(fā)研制成功用于內(nèi)燃機噴射控制器、造紙、水切割等動力源的海水軸向柱塞泵和馬達。1996年Tampere大學(xué)又成功研制出比例流量控制純水液壓系統(tǒng)[2]?,F(xiàn)今純水液壓技術(shù)已成為現(xiàn)代液壓傳動技術(shù)發(fā)展的新方向。以水(天然水、海水)為液壓介質(zhì),具有無污染、安全、清潔衛(wèi)生等優(yōu)點,并且以水為介質(zhì)的水傳動技術(shù)具有結(jié)構(gòu)簡單、效率高、經(jīng)濟等優(yōu)點,在眾多領(lǐng)域有著廣泛的應(yīng)用前景。
1.3 論文構(gòu)成及研究內(nèi)容
本論文主要對液壓試驗臺進行液壓系統(tǒng)設(shè)計、液壓元件選型、液壓泵站、油箱、管路及管件等選擇,具體內(nèi)容包括:
(1) 液壓試驗臺基本設(shè)計計算;
(2) 液壓試驗臺選用設(shè)計;
(3) 簡易輕載壓力機設(shè)計。
2 液壓試驗臺基本設(shè)計計算
2.1 液壓系統(tǒng)設(shè)計步驟與設(shè)計要求
液壓系統(tǒng)的設(shè)計步驟并無嚴(yán)格的順序,各步驟間往往要互相穿插進行。一般來說,在明確設(shè)計要求之后,大致按如下步驟進行。
(1) 確定液壓執(zhí)行元件的形式;
(2) 進行工況分析,確定系統(tǒng)的主要參數(shù);
(3) 定制基本方案,擬定液壓系統(tǒng)原理圖;
(4) 選擇液壓元件;
(5) 液壓系統(tǒng)的性能驗算;
(6) 繪制工作圖,編制技術(shù)文件。[3]
2.2 初選系統(tǒng)工作壓力
壓力的選擇要根據(jù)載荷大小和設(shè)備類型而定。還要考慮執(zhí)行元件的裝配空間、經(jīng)濟條件及元件供應(yīng)情況等的限制。在載荷一定的情況下,工作壓力低,勢必要加大執(zhí)行元件的結(jié)構(gòu)尺寸,對某些設(shè)備來說,尺寸要受到限制,從材料消耗角度看也不經(jīng)濟;反之,壓力選的太高,對泵、缸、閥等元件的材質(zhì)、密封、制造精度也要求很高,必然要提高設(shè)備成本。一般來說,對于固定的尺寸不太受限的設(shè)備,壓力可以選低一些,行走機械重載設(shè)備壓力要選的高一些。具體選擇可參考表2-1、表2-2。
表2-1 按載荷選擇工作壓力
載荷/kN
<5
5-10
10-20
20-30
30-50
>50
工作壓力/MPa
<0.8-1
1.5-2
2.5-3
3-4
4-5
≥5
表2-2 各種機械常用的系統(tǒng)工作壓力
機械類型
機床
農(nóng)業(yè)機械
小型工程機械建筑機械液壓鑿巖機
液壓機大中型挖掘機重型機械起重運輸機械
磨床
組合機床
龍門刨床
拉床
工作壓力/MPa
0.8-2
3-5
2-8
8-10
10-18
20-32
本試驗臺屬于中低壓裝置,初選最大工作壓力16MPa。
2.3 計算液壓缸的主要結(jié)構(gòu)尺寸
液壓缸有關(guān)設(shè)計參數(shù)見圖2-1。
(a)
(b)
圖2-1 液壓缸的主要設(shè)計參數(shù)
圖(a)未液壓缸活塞桿工作在受壓狀態(tài),圖(b)未活塞桿工作在受拉狀態(tài)。
活塞桿受拉時
(3-1)
活塞桿受壓時
(3-2)
式中 ——無桿腔活塞有效作用面積(m2);
——有桿腔活塞有效面積(m2);
p1——液壓缸工作腔壓力(Pa);
p2——液壓缸回油腔壓力(Pa),即被壓力,初算時按表2-3選??;
D——活塞直徑;
d——活塞桿直徑。
表2-3 執(zhí)行元件被壓力
系統(tǒng)類型
被壓力/MPa
簡單系統(tǒng)或輕載節(jié)流調(diào)速系統(tǒng)
0.2-0.5
回油路帶調(diào)速閥的系統(tǒng)
0.4-0.6
回油路設(shè)置有背壓閥的系統(tǒng)
0.5-1.5
用補油泵的閉式回路
0.8-1.5
回油路較復(fù)雜的工程機械
1.2-3
回油路較短,且直接回油箱
可忽略不計
一般,液壓缸在受拉狀態(tài)下工作,其活塞面積為
(3-3)
運用式(3-3)須事先確定A1與A2的關(guān)系,或是活塞桿徑d與活塞直徑D的關(guān)系,令桿徑比,其比值可按表2-4和表2-5選取為0.5。
表2-4 按工作壓力選取d/D
工作壓力/MPa
≤5.0
5.0-7.0
≥7.0
d/D
0.5-0.55
0.62-0.70
0.7
表2-4 按速比要求確定d/D
v2/v1
1.15
1.25
1.33
1.46
1.61
2
d/D
0.3
0.4
0.5
0.55
0.62
0.71
注:v1—無桿腔進油時活塞運動速度;
v2—有桿腔進油時活塞運動速度。
FW初選為20kN,為液壓缸的機械效率,取0.9,由式(3-1)可計算出F≈22.2kN,由表2-3選取被壓力為0.2MPa,則可由公式
(3-4)
計算出D=40.093mm,按表2-5圓整為40mm。
表2-5 常用液壓缸內(nèi)徑D(mm)
40
125
50
140
63
160
80
180
90
200
100
220
110
250
2.4 制定基本方案和繪制液壓系統(tǒng)圖
2.4.1 制定基本方案
(1)制定調(diào)速方案
運動方向和運動速度的控制是擬定液壓回路的核心問題。
方向控制用換向閥或邏輯控制單元來實現(xiàn)。對于一般中小流的液壓系統(tǒng),大多通過換向閥的有機組合實現(xiàn)所要求的動作。對高壓大流量的液壓,現(xiàn)多采用插裝閥與先導(dǎo)控制閥的邏輯組合來實現(xiàn)。
速度控制涌過改變液壓執(zhí)行元件輸入或輸出的流量或者利用密封空間的容積變化來實現(xiàn)。相應(yīng)的調(diào)速方式有節(jié)流調(diào)速、容積調(diào)速以及二者的結(jié)合——容積節(jié)流調(diào)速。
節(jié)流調(diào)速一般采用定量泵供油,用流量控制閥改變輸入或輸出液壓執(zhí)行元件的流量來調(diào)節(jié)速度。此種調(diào)速方式結(jié)構(gòu)簡單,由于這種系統(tǒng)必須用溢流閥,故效率低,發(fā)熱量大,多用于功率不大的場合。
容積節(jié)流調(diào)速一般是用變量泵供油,用流量控制閥調(diào)節(jié)輸入或輸出液壓執(zhí)行元件的流量,并使其供油量與需油量相適應(yīng)。此種調(diào)速回路效率也較高,速度穩(wěn)定性較好,但其結(jié)構(gòu)性比較復(fù)雜。
節(jié)流調(diào)速又分別有進油節(jié)流、回油節(jié)流和旁路節(jié)流三種形式。進油節(jié)流啟動沖擊較小,回油節(jié)流常用于有負(fù)載荷的場合,旁路節(jié)流多用于高速。
綜合考慮本試驗臺采用旁通節(jié)流調(diào)速,調(diào)速回路一經(jīng)確定,回路的循環(huán)形式也就隨之確定了,采用開式循環(huán)形式,在開式系統(tǒng)中,液壓泵從油箱吸油,壓力油流經(jīng)系統(tǒng)施放能量后,再排回油箱。開式回路結(jié)構(gòu)簡單,散熱性好。
(2)制定壓力控制方案
液壓執(zhí)行元件工作時,要求系統(tǒng)保持一點的工作壓力或在一定壓力范圍內(nèi)工作,也有的需要多級或無級連續(xù)地調(diào)節(jié)壓力。由于采用節(jié)流調(diào)速,本系統(tǒng)由定量泵供油,用溢流閥調(diào)節(jié)所需壓力,并保持恒定。
(4) 制定順序動作方案
主機各執(zhí)行機構(gòu)的順序動作,是根據(jù)設(shè)備類型不同,有的按固定程序,有的則是隨機的或人為的。工程機械的控制機構(gòu)多為手動,一般用手動的多路換向閥控制。加工機械的各執(zhí)行機構(gòu)的順序動作多采用行程控制,當(dāng)工作部件移動到一定位置時,通過電氣行程開關(guān)發(fā)出電信號給電磁鐵推動電磁閥或直接壓下行程閥來控制連續(xù)的動作。行程開關(guān)安裝比較方便,而用行程閥需連接相應(yīng)的油路,因此只適用于管路連接比較方便的場合。為降低成本,同時使操縱可靠,本系統(tǒng)采用手動操縱方式。
(5) 選擇液壓動力源
液壓系統(tǒng)的工作介質(zhì)完全有液壓源來提供,液壓源的核心是液壓泵。本系統(tǒng)采用定量泵供油,在無其他輔助油源的情況下,液壓泵的供油量要大于系統(tǒng)的需油量,多余的油經(jīng)溢流閥流回油箱,溢流閥用時起到控制并穩(wěn)定油源壓力的作用。
油液的凈化裝置是液壓源中不可缺少的。在泵的入口裝有吸油過濾器,使進入系統(tǒng)的油液符合使用要求。
2.4.2 液壓試驗臺系統(tǒng)原理圖
液壓系統(tǒng)圖由擬定好的控制回路及液壓源組合而成。各回路相互組合時要去掉重復(fù)多余的元件,力求系統(tǒng)結(jié)構(gòu)簡單。注意各元件間的連鎖關(guān)系,避免誤動作發(fā)生。要盡量減少能量損失環(huán)節(jié)。提高系統(tǒng)的工作效率。
液壓綜合試驗臺系統(tǒng)圖如圖l所示。該試驗臺的動力來源于電動機1,它可以驅(qū)動液壓泵3運轉(zhuǎn)。液壓泵3是該試驗臺的壓力油源。當(dāng)需要測試液壓閥和液壓缸時,由液壓泵3供給壓力油,通過調(diào)速閥13進行分流,可使供油量發(fā)生變化,以滿足不同類型液壓閥和液壓缸對流量的要求,安全閥12可以限定系統(tǒng)的最高壓力。測試液壓閥和液壓缸時,采用先導(dǎo)型溢流閥作調(diào)壓閥,調(diào)壓閥11并聯(lián)在主油路中。系統(tǒng)中的換向閥10采用了手動操縱方式,降低了成本,同時使操縱可靠。
測試液壓缸時,調(diào)壓閥11松開,調(diào)整調(diào)速閥13的開度,使供油量達到液壓缸的額定流量。將快速頭分別與液壓缸的進出油口相連接。液缸的主要測試項目如下:
(1)最低啟動壓力,在空載工況下,向液壓缸無桿腔通入液壓油,逐漸擰緊調(diào)壓閥11手柄,通過壓力表8記錄活塞桿啟動時的壓力值;
(2)內(nèi)泄漏,通過上下移動換向閥10,即可壓力油分別送入液壓缸各腔,再逐漸擰緊調(diào)壓閥11手柄,當(dāng)活塞運行到行程終點后,使調(diào)壓閥11調(diào)至被測缸的額定壓力,卸下液壓缸的回油管并接一量杯,保壓5分鐘,觀察內(nèi)泄漏量;
圖2-2 液壓系統(tǒng)圖
(3)耐壓試驗,根據(jù)(2)的調(diào)整方法,當(dāng)活塞運行到行程終點后,使調(diào)壓閥11調(diào)至被測缸額定壓力的1.5倍,保壓2分鐘,觀察零件的破壞或永久變形情況;
(4)外滲漏,在(2)、(3)測試項目中,觀察活塞桿處及其他結(jié)合面滲油情況。
測試液壓閥時,同測試液壓缸一樣,調(diào)整調(diào)速閥13的開度,使供油量達到液壓閥的額定流量。將快速接頭分別與液壓閥的進出油口相連接。以溢流閥為例,其主要測試項目如下:
(1)壓力調(diào)節(jié)范圍,將換向閥10上移,調(diào)壓閥11調(diào)至被測閥額定壓力的1.15倍左右。調(diào)節(jié)被測閥的調(diào)壓手輪,從最小壓力至被測閥額定壓力,再從額定壓力至最小壓力,重復(fù)三次,觀察壓力表8的上升與下降情況,并記錄調(diào)壓范圍;
(2)壓力振擺值,將換向閥10上移,調(diào)壓閥11調(diào)至被測閥的額定壓力。壓力振擺值可由壓力表8讀出;
(3)內(nèi)泄漏,將換向閥10上移,調(diào)節(jié)被測閥的調(diào)壓手輪,使閥口關(guān)閉。調(diào)壓閥24調(diào)至比被測閥額定壓力高0.3-0.5 MPa,從被測閥的溢油口測量泄漏量,該值應(yīng)小于規(guī)定值;
(4)壓力損失,將換向閥10上移,調(diào)節(jié)被測閥的調(diào)壓手輪至全松位置,分別通過壓力表8和9(低壓表)測出進口和出口壓力,其差值即為被測閥的壓力損失。[4]
3 液壓試驗臺選用設(shè)計
3.1 液壓泵的選型與安裝
3.1.1 液壓泵工作壓力的確定
(3-1)
p1是液壓執(zhí)行元件的最高工作壓力,對于本系統(tǒng)由于設(shè)計原始數(shù)據(jù)給定系統(tǒng)最高壓力為16MPa,則泵的工作壓力選定為16MPa。
3.1.2 液壓泵流量的確定
(3-2)
設(shè)計給定原始數(shù)據(jù)要求系統(tǒng)最大流量為12L/min,則相當(dāng)于=12L/min,取泄露系數(shù)K=1.2,求得液壓泵流量qvp=14.4L/min。
根據(jù)以上參數(shù),綜合考慮后選用上海申葉液壓件廠生產(chǎn)的YB-E10型定量葉片泵,當(dāng)壓力為16MPa、驅(qū)動轉(zhuǎn)速為1440時,泵流量為14.4MPa/min。油泵從軸端看轉(zhuǎn)向為順時針,進油口與出油口在同一側(cè)方向。
3.1.3 液壓泵的安裝方式
液壓泵裝置包括不同類型的液壓泵、驅(qū)動電機及其聯(lián)軸器等,其安裝方式分為立式和臥式兩種。
(1)立式安裝 將液壓泵和與之相連的油管放在液壓油箱內(nèi),這種結(jié)構(gòu)形式緊湊、美觀,同時電動機與液壓泵的同軸度能保證好,吸油條件好,漏油可直接回液壓油箱,并節(jié)省占地面積。但安裝維修不方便,散熱條件不好。
(2)臥式安裝 液壓泵及管道都裝在液壓油箱的外面,安裝維修方便,散熱條件好,但有時電動機與液壓泵的同軸度不容易保證。
電動機與液壓泵的聯(lián)結(jié)方式可分為法蘭式、支架式和支架法蘭式。
(1)法蘭式:液壓泵安裝在法蘭上,法蘭再與帶法蘭盤的電動機聯(lián)接,電動機與液壓泵依靠法蘭盤上的止口來保證同軸度,這種結(jié)構(gòu)裝拆很方便。
(2)支架式:液壓泵直接安裝在支架的止口里,然后依靠支架的底面與底板相連,再與帶底座的電動機相連。這種結(jié)構(gòu)對于保證同軸度比較困難(電動機與液壓泵的同軸度≤0.05mm)。為了防止安裝誤差產(chǎn)生的振動,常用帶有彈性的聯(lián)軸器。
(3)法蘭支架聯(lián)接:電動機與液壓泵先以法蘭聯(lián)接,法蘭再與支架聯(lián)接,最后支架再裝在底板上。它的優(yōu)點是大底板不用加工,安裝方便,電動機與液壓泵的同軸度靠法蘭盤的止口來保證的。
由于本試驗臺沒有采用外部冷卻裝置,優(yōu)先考慮散熱所以液壓泵裝置采用臥式安裝。液壓泵與電動機的連接采用支架式,安裝支架如圖3-1所示。
圖3-1 泵安裝支座
泵的進油口和出油口采用自制的法蘭連接油管,法蘭形式簡單,加工容易,外形尺寸如圖3-2所示。
圖3-2 泵進油口法蘭
法蘭上沒有加工密封用溝槽,密封由自制的密封墊保證,密封墊由耐油橡膠制成,裝配時要先用清潔劑或者丙酮將密封墊清洗干凈并抹上密封膠,該密封墊能保證密封性能,并且成本較低,容易加工,尺寸如圖3-3所示。
圖3-3 泵進油口密封墊
3.2 電動機功率的確定
在試驗臺工作過程中,由于被檢測對象的不用系統(tǒng)的壓力和流量都是變化的,所需功率變化較大,為滿足整個設(shè)計要求,按較大功率來確定電動機功率。
前面的計算已知,泵供油壓力為pp=16MPa,泵的流量為14.4MPa/min,取泵的總效率為=0.8,泵的總驅(qū)動功率由公式(3-1)計算為P=4.8kW
(3-3)
考慮到本試驗臺測試對象主要為中低壓元件,而電動機一般允許短時間超載25%,這樣電動機的功率還可以降低一些。
查看產(chǎn)品樣本,選用4kW的電動機,滿載轉(zhuǎn)速1440r/min。
3.3 液壓閥的選型與安裝
首先要確定液壓元件的安裝連接形式,液壓元件的安裝形式與液壓系統(tǒng)的結(jié)構(gòu)形式和元件的配置形式有關(guān):
(1)按系統(tǒng)的結(jié)構(gòu)形式確定。液壓系統(tǒng)的結(jié)構(gòu)形式分為集中式和分散式兩種。集中式結(jié)構(gòu)是將液壓系統(tǒng)的動力裝置、控制調(diào)節(jié)裝置和油箱等放在主機之外,單獨設(shè)置一個液壓站。這中形式的優(yōu)點是安裝連接方便,液壓源的振動、發(fā)熱都不會影響主機的工作性能。缺點就是設(shè)置液壓站,增加了占地面積和管路長度。分散式結(jié)構(gòu)是將液壓元件分散放置在主機的某些部位,與主機合為一體,其優(yōu)點是結(jié)構(gòu)緊湊、占地少、管路短。缺點是安裝連接(包括維修)復(fù)雜液壓源的振動和發(fā)熱都會影響主機的工作性能和精度。為此,對于一般的液壓系統(tǒng),為了使結(jié)構(gòu)緊湊,可采用分散式安裝連接的方式,而對于組合機床、自動線和精密設(shè)備的液壓系統(tǒng)為了減少油箱的發(fā)熱、液壓源振動的影響,保持主機的工作精度,多采用集中式的配置形式確定。
(2)按閥類元件的配置形式確定。液壓元件的配置形式分為管式、板式和集成式配置三種形式。配置形式不同, 液壓系統(tǒng)的壓力損失和元件的連接方式也就不同。目前,閥類元件的配置形式廣泛采用集成式。通常使用的液壓元件有板式和管式兩種結(jié)構(gòu)。管式元件通過油管來實現(xiàn)相互之間的連接,液壓元件的數(shù)量越多,連接的管件越多,結(jié)構(gòu)越復(fù)雜,系統(tǒng)壓力損失越大,占用的空間就越大,維修、保養(yǎng)和拆裝越困難。因此,管式元件一般用于結(jié)構(gòu)簡單的系統(tǒng)。板式元件固定在板件上,分為液壓油路連接、集成塊連接和疊加閥連接。把一個液壓回路中個元件合理地布置在一塊液壓油路板上,這與管式連接比較,除了進出液壓油液通過管道外,各液壓元件用螺釘規(guī)則地固定在一塊液壓閥塊上,元件之間由液壓油路板上的孔道勾通。板式元件的液壓系統(tǒng)安裝、調(diào)試和維修方便,壓力損失小,外形美觀。但是,其結(jié)構(gòu)標(biāo)準(zhǔn)化程度差,互換性不好,結(jié)構(gòu)不夠緊湊,制造加工困難,使用受到限制。
通過綜合考慮,鑒于本系統(tǒng)結(jié)構(gòu)較為簡單,為降低成本,液壓元件采用管式連接。液壓閥與試驗臺的安裝連接采用自制的安裝支座,安裝時,液壓閥安裝在對應(yīng)的閥安裝支座上,支座再插入燕尾槽工作臺面上。這使得液壓閥的安裝位置容易調(diào)整,方便拆裝和組合不同的液壓回路,其外形尺寸如圖3-4所示。
選擇閥類元件應(yīng)注意的問題:
(1)應(yīng)盡量選用標(biāo)準(zhǔn)定型產(chǎn)品,除非不得已時才自行設(shè)計專用件;
(2)閥類元件的規(guī)格主要根據(jù)流經(jīng)該閥油液的最大壓力和最大流量選取。選擇溢流閥時,應(yīng)按液壓泵的最大流量選?。贿x擇節(jié)流閥和調(diào)速閥時,應(yīng)考慮其最小穩(wěn)定流量滿足機器低速性能的要求;
(3)一般選擇控制閥的額定流量應(yīng)比系統(tǒng)管路實際通過的流量大一些,必要時,允許通過閥的最大流量超過其額定流量的20%。
圖3-4 液壓閥安裝支座
選擇液壓閥主要根據(jù)閥的工作壓力和通過閥的流量,本系統(tǒng)測試實驗時最高壓力為16MPa,所選閥的規(guī)格型號見表3-1
表3-1 液壓試驗臺液壓閥明細(xì)表
序號
名稱
選用規(guī)格
1
調(diào)速閥
2FRM5-20/15
2
溢流閥
DBDH8G10NG25
3
先導(dǎo)溢流閥
DB10AG1
4
手動換向閥
DMT-03-3C2-50
3.4 液壓油缸的選型
在2.2節(jié)已經(jīng)求得液壓缸的直徑為40mm,系統(tǒng)工作壓力為16MPa。
選YHGE40/28260LJ1L1Q型液壓缸,缸徑40mm,速度比2,活塞桿直徑28,工作壓力。
3.5 液壓油管的選型
液壓系統(tǒng)中使用的油管分硬管和軟管,選擇的油管應(yīng)有足夠的通流截面和承壓能力,同時,應(yīng)盡量縮短管路,避免急轉(zhuǎn)彎和截面突變。
(1)鋼管:中高壓系統(tǒng)選用無縫鋼管,低壓系統(tǒng)選用焊接鋼管,鋼管價格低,性能好,使用廣泛。
(2)銅管:紫銅管工作壓力在6.5~10MPa以下,易變曲,便于裝配;黃銅管承受壓力較高,達25MPa,但不如紫銅管易彎曲。銅管價格高,抗震能力弱,易使油液氧化,應(yīng)盡量少用,只用于液壓裝置配接不方便的部位。
(3)軟管:用于兩個相對運動件之間的連接。高壓橡膠軟管中夾有鋼絲編織物;低壓橡膠軟管中夾有棉線或麻線編織物;尼龍管是乳白色半透明管,承壓能力為2.5~8MPa,多用于低壓管道。因軟管彈性變形大,容易引起運動部件爬行,所以軟管不宜裝在液壓缸和調(diào)速閥之間。油管的規(guī)格尺寸大多由它所連接的液壓元件接口處的尺寸所決定的,對一些重要的管道應(yīng)驗算其內(nèi)徑和壁厚。油管內(nèi)徑尺寸一般可參照選用的液壓元件接口尺寸而定,也可按管路允許流速進行計算。
(3-4)
式中 qv——通過管道內(nèi)的流量(m3/s);
v——管內(nèi)允許流速(m/s),見表3-2.
按最大流量計算,本系統(tǒng)的最大流量為12L/min,吸油管v取0.8m/s,由公式(3-4)計算得d=17.867mm,選取公稱通徑15mm,外徑22mm,壁厚2mm的鋼管;壓油管v取3m/s,由公式(3-4)計算得d=9.226mm;回油管v取1.5m/s,計算得d=13.048mm,選取公稱通徑15mm,外徑22mm,壁厚2mm的鋼管。由于壓油管選用的是膠管總成,液壓元件的進出油口尺寸不同也就需要不同的接頭,所以膠管在經(jīng)濟允許的條件下可以購買一系列的不同尺寸的膠管,用于實驗的不同液壓元件的連接和回路組織。
表3-2 允許流速推薦值
管道
推薦流速/(m/s)
液壓泵吸油管道
0.5-1.5,一般常取1以下
液壓系統(tǒng)壓油管道
3-6,壓力高,管道短,粘度小取大值
液壓系統(tǒng)回油管道
1.5-2.6
3.6 液壓油箱的設(shè)計
液壓油箱的作用是貯存液壓油,分離液壓油中的雜質(zhì)和空氣,同時還起到散熱的作用。
3.6.1 液壓油箱有效容積的確定
液壓油箱容量是油箱主要的技術(shù)參數(shù),油箱必須有一定的容量,才能實現(xiàn)基本功能,設(shè)計油箱容量涉及很多的因素,常采用經(jīng)驗法,但對于要求較高的液壓系統(tǒng)有必要分析系統(tǒng)的各種要求,并以熱量為基礎(chǔ)采用計算的方法來確定。液壓油箱在不同的工作條件下影響散熱的條件很多,通常按壓力范圍來考慮。
油箱容量的經(jīng)驗公式為
(3-5)
式中 qv——液壓泵每分鐘排出的壓力油的容積;
——經(jīng)驗系數(shù),見表3-3。
表3-3 經(jīng)驗系數(shù)
系統(tǒng)類型
行走機構(gòu)
低壓系統(tǒng)
中壓系統(tǒng)
鍛壓機械
冶金機械
1~2
2~4
5~7
6~12
10
本系統(tǒng)的最大流量為12L/min,為中低壓系統(tǒng),經(jīng)驗系數(shù)取7,由公式(3-5)計算得油箱的有效容量為84L。
3.6.2 液壓油箱的散熱計算
(1)系統(tǒng)發(fā)熱量計算,在液壓系統(tǒng)中,凡系統(tǒng)中的損失都變成熱能散發(fā)出來。由于本系統(tǒng)工作裝置和回路并非固定形式,因為組裝不同的液壓元件、不同的工況而產(chǎn)生不同效率,損失也就不同,本系統(tǒng)的散熱按系統(tǒng)輸入功率最大值的20%來計算,系統(tǒng)的輸入功率為4kW,則發(fā)熱功率為0.8kW。
(2)散熱量計算,由于本系統(tǒng)沒有安裝額外的冷卻裝置,忽略系統(tǒng)中其他地方的散熱,只考慮油箱散熱是,顯然系統(tǒng)的總發(fā)熱功率H全部由油箱散熱來考慮。這時油箱散熱面積A的計算公式為
(3-6)
式中 A——油箱的散熱面積(m2);
H——油箱需要散熱的熱功率(W);
——油溫(一般以55℃考慮)與周圍環(huán)境溫度的溫度(℃);
K——散熱系數(shù)。與油箱周圍通風(fēng)條件的好壞而不同,通風(fēng)很差時K=8~9;良好時K=15~17.5;風(fēng)扇強行冷卻時K=20~23;強迫水冷時K=110~175。
上面步驟已經(jīng)計算出H=800W,取15,散熱系數(shù)取9,則又公式3-6計算得A=5.93m2。
設(shè)備在停止運行后,設(shè)備中的那部分油液會因重力作用而流回液壓油箱,為了防止液壓油從油箱里溢出,油箱的液壓油位不能太高,一般不應(yīng)超過液壓油箱高度的80%,本系統(tǒng)所用的油箱容量為110L。
3.6.3 液壓油箱的容量計算
液壓油箱的有效容積為84L,油箱的散熱面積為5.39m2,綜合考慮試驗臺整體設(shè)計,由于沒有設(shè)置外部冷卻裝置,為提高冷卻效率,油箱的容量適當(dāng)增大,油箱尺寸設(shè)計為:1057×1341×933mm,油箱總?cè)萘繛?322L,由于設(shè)備在停止運行后,設(shè)備中的那部分油液會因重力作用而流回液壓油箱,為了防止液壓油從油箱里溢出,油箱的液壓油位不能太高,一般不應(yīng)超過液壓油箱高度的80%,本系統(tǒng)所用的油箱裝油量為1000L。
3.6.4 液壓油箱的結(jié)構(gòu)設(shè)計
液壓油箱采用鋼板焊接的分離式液壓油箱。其結(jié)構(gòu):
(1)隔板
①作用:增長液壓油流動循環(huán)時間