喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:1064457796 或 1304139763】
畢業(yè)設(shè)計(論文)中期報告
題目:收音機(jī)中框零件注射模設(shè)計
系 別 機(jī)電工程學(xué)院
專 業(yè) 機(jī)械設(shè)計制造及其自動化
班 級
姓 名
學(xué) 號
導(dǎo) 師
2013年 03月 20日
1. 設(shè)計(論文)進(jìn)展?fàn)顩r
1)分析零件的成形工藝性:
通過查閱書籍資料及查閱網(wǎng)絡(luò)數(shù)據(jù),發(fā)現(xiàn)ABS塑料重量輕,物理性能、化學(xué)性能及電氣性能等均很優(yōu)良,且很容易成型,價格便宜。所以,最終確定所制作塑件材料為低壓ABS,并根據(jù)實體塑件測量出實際尺寸。
2)澆注系統(tǒng)的選擇:
根據(jù)所選塑料的工藝性及塑件的形狀,為滿足制品表面質(zhì)量要求與提高成型 效率采用側(cè)澆口。
根據(jù)所設(shè)計塑件的特性及計算出塑件的體積和質(zhì)量選擇注射機(jī),初步確定選用柱塞式注射機(jī)。
3)分型面的選擇:
選擇塑件截面最大的部位。
4)澆注系統(tǒng)的設(shè)計與選擇:
包括主流道、分流道、澆注口的設(shè)計與選擇。
5)繪制完成了塑件的CAD二維圖和PROE三維圖,繪制模具裝配圖草圖。
6)設(shè)計的收音機(jī)中框零件圖見:圖1.1
圖1.1 三維零件圖
7)方案確定
(1)課題名稱:收音機(jī)中框零件注射模設(shè)計
(2)材料選擇:ABS
(3)生產(chǎn)批量:大
(4)精度要求:中
(5)塑料等級:6級
(6)方案確定:該產(chǎn)品為大批量生產(chǎn)。故設(shè)計的模具要有較高的注塑效率,澆注系統(tǒng)要能自動脫模,可采用點澆口自動脫模結(jié)構(gòu)。由于單型腔模具具有塑料塑件的形狀和尺寸一致性好,成型工藝條件容易控制,模具結(jié)構(gòu)簡單緊湊、模具制造成本低、制造周期短等特點,并結(jié)收音機(jī)外殼的質(zhì)量要求,根據(jù)本產(chǎn)品的生產(chǎn)批量及尺寸精度要求采用一腔一模, 所以采用單型腔模具。此方案生產(chǎn)效率高,操作簡便,動作可靠,方便脫出流道凝料,經(jīng)濟(jì)性價比高,故選此次模具設(shè)計選用方案。模具設(shè)計圖見:圖1.2、圖1.3
圖1.2 模具三維圖
圖示1.3 模具CAD圖
2. 存在問題及解決措施
在本次設(shè)計階段內(nèi),我深刻的體會到自己所儲備的知識的不足,三維軟件進(jìn)行電腦模擬設(shè)計件不能很好的使用,因此對模具不能進(jìn)行仿真模擬,對模具的質(zhì)量,以及零件的材料選擇等一系列問題不能解決,以及所查閱資料的缺乏和片面性。很多資料里面都屬于隔靴圖搔癢——尤其針對于注塑機(jī)的選型過程,大部分的資料里面都只有注塑機(jī)的型號和具體性能數(shù)據(jù),但是卻缺少如何選擇與校核的方法,令人百思不得其解。最后,本著求同存異的想法,綜合多處查詢資料的結(jié)果,選擇基礎(chǔ)結(jié)構(gòu),進(jìn)行設(shè)計。
我也應(yīng)該加強(qiáng)自己對塑料模具知識的學(xué)習(xí),下功夫?qū)W習(xí)軟件,并找尋相關(guān)模具設(shè)計書籍,努力使自己所設(shè)計出來的模具更具備可行性和實用性。同時,也應(yīng)該加強(qiáng)自己與老師、與同學(xué)之間的溝通,使自己的設(shè)計在互相印證中得到提高和完善,加深自己對本次設(shè)計的理解。
最后,我相信自己可以保持積極樂觀的態(tài)度去繼續(xù)接下來的設(shè)計過程。在老師的悉心教導(dǎo)下,能夠快速、有效的完成所有設(shè)計流程,并最終順利結(jié)束本次畢業(yè)設(shè)計。
3. 后期工作安排
1、 接下來將用兩周左右的時間對成型零件的設(shè)計計算徹底完成。
2、 用兩周時間繪制模具各主要零部件的零件圖及總體裝配圖。
3、 用兩周時間用PROE繪圖軟件對主要零部件進(jìn)行三維建模,繪制出爆炸圖。
4、 用兩周時間整理相關(guān)資料,撰寫畢業(yè)論文,準(zhǔn)備畢業(yè)答辯。
指導(dǎo)教師簽字:
年 月 日
大型注塑模具設(shè)計仿真工具:2400升固體廢棄物集裝箱
摘要
大型容器產(chǎn)品通常使用諸如滾塑的程序,這些技術(shù)沒有零件重量或尺寸限制。TIIP,薩拉戈薩大學(xué)注塑成型的機(jī)械工程,在歐洲標(biāo)準(zhǔn)下研發(fā)的CONTENURTM固體廢物的新容器高達(dá)2000升 ,其結(jié)果是一個新的主體達(dá)60公斤重。設(shè)計過程中結(jié)合了數(shù)項CAE工具(美學(xué)設(shè)計,機(jī)械設(shè)計及流變模擬),并在去年6月,顯示了最終結(jié)果,通過了不同的測試。如今,在市場上有超過5000個成品在模具生產(chǎn)過程中沒有做過基本的修改(超過100噸的重量)。本文重點論述集成工具和流程的設(shè)計與產(chǎn)品定義(即注射壓力,沖擊厚度和形狀的一部分力量)的方法。在這個過程中,特別是模具控制一些參數(shù)(注射速度,溫度,粘度,澆口位置...)的細(xì)節(jié)。
關(guān)鍵詞:CAE設(shè)計;容器;注塑成型
1.引言
過去的幾年,CAE工具在注射熱塑性彈性體成型行業(yè),構(gòu)建了一個真實的革命。一個開始直到最終的解決方案(包括幾個過程如開發(fā)、測試的原型,修改數(shù)據(jù),新的測試,……)的過程已經(jīng)被一個更快的設(shè)計、翻譯過程和最終的客戶在同一個電腦文件下一起工作(“并行工程”)的過程取代。因此,對模具制造和完成時間減少極大,同時,引入了一些關(guān)于使用CAE的建議。
薩拉戈薩工業(yè)大學(xué)注射塑料(T.I.I.P)車間,C.S.I.C相關(guān)單位,在注射熱塑性彈性體成型中,使用CAE工具已經(jīng)超過了15個年頭,同時在不同行業(yè)(機(jī)動車、家電、包裝、玩具等)的上百個項目中積累了很多的經(jīng)驗。T.I.I.P.的工作也包含著和歐洲不同的公司一起調(diào)研的項目(聚合物流變性、半自動磨具設(shè)計等)。
同時,這個組織一直意識到安排仿真技術(shù)制造的重要性,這種形式已經(jīng)合作并且由塑料工業(yè)基金會注射成型部研究會體質(zhì)指導(dǎo)。這個組織給注射成型企業(yè)提供了各項服務(wù),并且從中沒有任何盈利(如圖1)。許多國家的工業(yè)組織通過不同的程序和研究方向?qū)@個中心進(jìn)行了支持(新的工藝比如氣輔技術(shù)或噴流注射成型;新的設(shè)計比如使用壓力和溫度的設(shè)備的過程測量技術(shù))。
圖1 T.I.I.P注塑成型區(qū)域概貌
2.容器工程
1999年,第一個參與城市固體剩余物收集容器制造的西班牙公司(Contenur SPAIN,SL)去T.IIP-aiTIIP集團(tuán)共同進(jìn)行大尺寸的注塑件的設(shè)計工作,隨后測試了這些方案在這一領(lǐng)域應(yīng)用的實際可能性。
該項目的主要目標(biāo)是快速制造大容量(2400 L和更多)的容器,與市場產(chǎn)品中加入了昂貴的加固結(jié)構(gòu)旋轉(zhuǎn)成型的焊接金屬板或塑料制品產(chǎn)生競爭。顯然,構(gòu)成容器的所有部件中,主要的困難是單一模腔部分的制造。
這個文獻(xiàn)提供了幾個零件和模具設(shè)計的例子和失敗的建議[2,3],但是不太可能找到40kg重的大的塑料部件,而且,這個模具尺寸上的一個錯誤沒有簡單的解決方案(運(yùn)輸?shù)侥>吖ぞ咧圃焐痰闹圃旃S將會太昂貴,試驗和誤差的方法也是不提供)。
對于這個部件的設(shè)計,必須考慮到以下幾個方面:
?與歐洲標(biāo)準(zhǔn)EN12574[4]要求的基本尺寸一致;
?卸載電阻(排出側(cè))如(圖2);
?在功能條件和位置區(qū)具有高的耐沖擊性;
?表面容易清洗;
?美學(xué)設(shè)計;
?最低的成本(不僅是加工和裝配,還包括維護(hù));
?安裝的沖壓機(jī)施加的鎖模力限制(大型機(jī)器鎖模力的限制范圍在5000噸和10000噸之間);
?準(zhǔn)備標(biāo)記,也就是說,有自由的和平坦的空間;;
?材料的限制:采用其他CONTENUR設(shè)計的相同材料。
圖 2. 裝卸作業(yè)的邊界條件,材料非線性模型,有限元模型。
特別注意的兩個限制:范圍內(nèi)的最低成本和最大鎖模力。對于最低成本,厚度是關(guān)鍵(原料的成本),在制造時確定;因此,派生機(jī)器的成本大約為厚度[5]的平方。
另一方面,為了降低其合模力,部件的投影面積和分布的壓力與一部分厚度也有很大的關(guān)系(狹窄區(qū)域產(chǎn)生較高的注射壓力,可能也會產(chǎn)生大合模力)。
由Castany等研發(fā)的方法,不僅用于注射成型,也適用于其它類似的技術(shù)[6-8],如下:
(a) 測定產(chǎn)品的可行性:鎖模力和厚度在歐洲標(biāo)準(zhǔn)允許的基本幾何條件下調(diào)整尺寸。在這一步只是一般的線條設(shè)計,而不做功能細(xì)節(jié)。一些基本的結(jié)果如下表1所示。這些分析通過遺傳物質(zhì)的基本參數(shù),高密度聚乙烯(表2)得到。對于高級步驟,通過幾個溫度條件計算。
(b) 選擇材料,結(jié)合熔體流動指數(shù)(MFI)和機(jī)械性能,在注入點的位置進(jìn)行模擬,甚至不知道組件最終的幾何形狀,但得出幾個注入點的最好的位置是在容器主體的底部區(qū)域。該標(biāo)準(zhǔn)同時與模具結(jié)構(gòu)和零件的形狀有關(guān)。
(c) 分析主體的形式和零部件的厚度,比較結(jié)構(gòu)上的選擇方案:側(cè)壁形狀,包括氣體輔助技術(shù)注入管的側(cè)壁形狀增加的慣性等也被列入考慮。
(d) 顯然,模具的尺寸和凹陷的存在使得部件和模塊設(shè)計出現(xiàn)了一個其他問題。這種方式中,容器上部邊框的半圓形狀是一個很困難的設(shè)計問題,它由使用性能確定,但是在合模區(qū)域存在滑移。
(e) 將合適的零件體積和可行的不同形式與厚度和機(jī)械阻力的形式制造相結(jié)合。在這一步驟,有限元分析、3D設(shè)計和注料仿真技術(shù)同時進(jìn)行(圖3、4)。最終的零件尺寸如表3。?
表1
簡單塑料模型,第一次仿真分析結(jié)果
主體厚度(mm)/質(zhì)量(kg) 最大注射壓力 (MPa) 鎖模力(kN)
6/52 96 166,000
7/60 71 122,000
8/68 55 94,000
9/76 44 74,000
10/84 35 59,000
表2
基本模擬計算參數(shù)
熔體溫度(℃) 240
在恒定速度下的注射時間
秒 20
百分率 50
模具溫度(℃) 40
表3
2400 L主體的基本尺寸(毫米)
高度 1600
寬度 1480
長度 1600
圖3. 3D數(shù)模(Pro-E繪制)
圖4. C-mold軟件:噴出的塑料溫度和冷卻線管路
用這些基本尺寸核算這四步,設(shè)計組對于最終的幾何圖樣有一個初始目標(biāo),這些細(xì)節(jié)包含輸出角度,收音機(jī),設(shè)置的輔助配件的位置(軟木、滑軌等)。生產(chǎn)流動分析為關(guān)鍵性的方式,與美國,日本和墨西哥實業(yè)公司模具廠的模具工人一起將模具的各部分固定在最佳的位置。
這個過程的主要方面和仿真技術(shù)(為了保證注射工人的操作其他的細(xì)節(jié)不能存在)是:
1. 2.5D幾何圖形式樣模型。
2. 模腔注澆口位置。使用速度軌道去更好的控制料的流動性。根據(jù)軌道的流動澆注的設(shè)計原則使?jié)沧⑴c填滿模腔同步結(jié)束(避免保壓效應(yīng)),尤其要考慮到半圓形區(qū)域的邊界形狀。
3.最佳條件:溫度的選擇、涉及的厚度、設(shè)計的耐久強(qiáng)度評價條件。溫度在210℃到250℃的評價。
4. 必須要依靠正確的速度程序調(diào)節(jié)填料形式。在恒定速度的條件下,假想不允許的壓力值的增長,強(qiáng)化機(jī)器的極限。集裝箱磨具的最終布置,建議使用幾個沖壓速度。
這個步驟用目前已經(jīng)存在的小型集裝箱(如圖5),進(jìn)行了現(xiàn)實的試驗驗證。
圖5 用于工業(yè)生產(chǎn)條件為2400L試驗驗證真正的集裝箱模型
用CAE技術(shù)計算側(cè)面標(biāo)準(zhǔn)的沖壓速度如圖6所示。但是這個“函數(shù)”如果沒有實用性的編程就不能編入到注射成型機(jī)內(nèi)部,因為液壓系統(tǒng)不能精確的隨著所有梯度上升。無論如何,這個優(yōu)化程序后,能夠得到大約15%的鎖模力。
圖6 計算機(jī)顯示的側(cè)面理論沖擊速度
5. 加注條件準(zhǔn)備好以后,模具制造者從一個初步設(shè)想到設(shè)計的裝備,已經(jīng)用一個新的數(shù)值模型和最終的熱流道系統(tǒng)模具所驗證。對于減少填充壓力,這個連續(xù)的工藝是有可能性的,但是實際的工藝安排,維護(hù),一定的停工降低了其用途。
6. 最后,模具冷卻分析、包裝和彎曲矯正過程走向成熟。在這種方式下,Kyowe工業(yè)公司根據(jù)材料的傳熱性采用不同的建筑材料,調(diào)整冷卻管路。成品模具的重量超過了150,000kg(相當(dāng)于150公噸)。
事實上,在注射成型中,超過6000個部件在制造中沒有發(fā)現(xiàn)任何問題。報廢、使用性能、加工比率是和目前1000L的集裝箱(每小時20-25個零件)相似的。其他組件同時設(shè)計,實際上,得到的最后的結(jié)果非常復(fù)雜,比如:集裝箱的系統(tǒng),明顯的小于它的主體。
本文作者,定論:CAE輔助工具在設(shè)計中是最基本的工具,同相關(guān)知識和使用相似的模具進(jìn)行真實的實驗驗證相比。
鳴謝
本文作者,對于T.I.I.P-a.i.T.I.I.P組織和CONTENUR 技術(shù)人員的支持、設(shè)備和最終的目標(biāo)致以衷心的感謝。特別感謝D.Castany,感謝他們的專門技能在塑料注射成型工藝、設(shè)計、在很多培訓(xùn)班里面進(jìn)行的講解和世界研討會。
Abstract no Uni w and streets and process K 1. last process as ne of w engineering”). ture some Uni has plastics hundreds household-electric, URL: 0924-0136/$ doi:10.1016/j.jmatprotec.2005.04.006 Journal of Materials Processing Technology 175 (2006) 1519 An example of simulation tools use for large injection moulds design: The CONTENUR TM 2400 l solid waste container J. Aisa a, , C. Javierre a , J.A. De la Serna b a T.I.I.P., C.S.I.C. Associated Unit, Department of Mechanical Engineering, University of Zaragoza, Spain b CONTENUR ESPA NA, S.L., Polgono Industrial Los Angeles, Getafe, Madrid, Spain Large containers with volumes above 1100 l are usually produced using procedures such as rotomoulding process. These techniques have part weight or dimensional limits. T.I.I.P., injection moulding plastic group of the Department of Mechanical Engineering of the Zaragoza versity, developed with CONTENUR TM a new product under European norms for solid waste containers up to 2000 l volume; the result as a new main body up to 60 kg weight in one part. The design process combined several CAE tools (aesthetical design, mechanical design rheological simulation) and, in last June, showed final result and passed different tests. Nowadays, more than 5000 samples are on the without basic modifications in the mould (more than 100 tonnes weight). The paper focuses on the methodology used to integrate tool process design with product definition (i.e. injection pressure and clamp force versus thickness and part shape). Some parameters about control in this particular mould (injection rate, temperature, viscosity, gate location, .) are detailed. 2005 Elsevier B.V. All rights reserved. eywords: CAE design; Container; Injection moulding Introduction CAE tools have constituted an authentic revolution in the years within injection of thermoplastics. The sequential until the final solution (including several setups such development, test of prototypes, modification of figures, w test, .) has been replaced by a faster one consisting a procedure with the designer, transformer and final client orking together on the same computer files (“concurrent Therefore, the timing for mould manufac- and completion has been reduced enormously; however, interesting advices about CAE use are described in 1. The Workshop of Injection of the Plastics Industry of the versity of Zaragoza (T.I.I.P.), C.S.I.C. Associated Unit, been working with CAE tools on injection of thermo- for more than 15 years, with enormous advantage for of projects made in different sectors (automotive, packaging, toys, etc.). T.I.I.P. activities Corresponding author. E-mail address: tiipunizar.es (J. Aisa). . included tion, dif the uf collaborated Association try injection technological or ish research cascade techniques 2. the see front matter 2005 Elsevier B.V. All rights reserved. several research projects (rheological characteriza- semiautomatic mould design, .) working together with ferent European companies. Nevertheless, this group has always been conscious of necessity to arrange simulation with procedure of man- acture next to the machine, of such a form that has been and directed by the constitution of the Research of the Workshop of Injection of the Plastic Indus- (a.i.T.I.I.P.) foundation, which provides services to the companies without a profit spirit (Fig. 1). This center has been supported by various national ganizations such as the Aragons Government and Span- Department of Industry through different programs and lines (new processes like gas-assisted techniques or injection moulding, new designs, process-measuring using pressure and temperature devices .). The CONTENUR Project When, in 1999, the first Spanish company involved in manufacture of containers for the collection of urban 16 Processing solid T pieces testing of with plastic of all the ples big mould mak and to and minimum material), J. Aisa et al. / Journal of Materials Fig. 1. a.i.T.I.I.P. injection moulding area, general view. remainders (CONTENUR SPAIN, S.L.) went to the .I.I.P.a.i.T.I.I.P. Group to work jointly on the design of of great size in injection, then arrived the moment for the real possibilities of these programs in this field. The main objective of the project was the fast manufacture containers of great capacity (2400 l and more) to compete market products with welded metallic plate solutions or ones made by rotational moulding with the inclusion expensive reinforcement structures. Obviously, between the pieces that constituted the set, the main challenge was manufacture of a single part bucket. The literature shows several part and mould design exam- and failure advices 2,3, but it is not possible to find plastic parts up to 40 kg weight and a mistake in this size will have no easy solution (tool transport to mould ers manufacturing plant will be too expensive, and trial error method is not available). For the design of this element, the following aspects had be considered: basic dimensions agreed with the European Norm EN 12574 4; unloading resistance (discharge sides) (Fig. 2); high impact resistance for functional conditions and loca- tion (parking areas, for example); easily cleaning surfaces; friendly aspect, aesthetical design; minimum cost (not only for processing and assembly but also for on-street maintenance); restriction of the clamping force imposed by the installed press machine (big special machines with limited clamping range between 5000 and 10,000 tonnes); prepared for labelling, that is to say, with visible free and flat spaces; material restrictions: same materials used for other CON- TENUR designs. Special mention requires two limitations: minimum cost maximum clamping force under mentioned limits. For a cost, thickness is fundamental (by the cost of raw inasmuch as the time of manufacture; therefore, Fig. model, the the jected strongly a force not techniques (a) (b) T Results Main (mm)/weight Technology 175 (2006) 1519 2. Boundary conditions for unloading operation, nonlinear material finite element model. cost of the machine derived approximately depends on square of the thickness 5. On the other hand, to reduce the closing force, the pro- area of the piece and the distribution of pressures are related with part thickness (narrow sections caused high injection pressure, which could as well suppose a high of closing). The methodology applied, developed by Castany et al., only for injection moulding but also for other similar 68, is as given below: Determination of the feasibility of the product: clamping force evaluation and thickness part on an agreed basic geometry to adjust dimensions with the European norm. Only general design lines, and not functional details, were included in this step. Some basic results are shown in Table 1. These analyses were made with basic param- eters for generic material family, high-density polyethy- lene (Table 2). For advanced steps, calculations were made using several temperature conditions. Material selection, combining melt flow index (MFI) and mechanical behaviour, and injection point locations were simulated, without even knowing the final geometry of the component. Best results were found for several injec- tion points arranged around the bottom area in the main able 1 for simple plastic model, first analysis using simulation tools body thickness (kg) Maximum injection pressure (MPa) Required clamping force (kN) 6/52 96 166,000 7/60 71 122,000 8/68 55 94,000 9/76 44 74,000 10/84 35 59,000 Processing T Computing Melt Injection Mould Fig. ments. (c) (d) J. Aisa et al. / Journal of Materials able 2 parameters for basic simulations temperature ( C) 240 time at constant ram speed In seconds 20 In percent 50 temperature ( C) 40 3. Basic line, Pro-Engineer software, before final moulding arrange- body of the container. This criteria was also imposed by mould structure and part shape. Analysis of the body form and thickness of the part comparing constructive alternatives: its sidewall shapes, metallic elements of reinforcement and, if necessary, inclusion of the tubes injected with gas-assisted tech- niques to increase inertia of the sections, etc., were con- sidered. Obviously, mould dimensions and the presence of under- cuts supposed a problem added for the design of piece and mould. In this way, semicircular shape of the border T Basic Height W Length (e) the geometry settling sories set w Compan (other trial 1. 2. 3. Fig. 4. Software C-Mold: plastic temperature Technology 175 (2006) 1519 17 able 3 dimensions for 2400 l main body (mm) 1600 idth 1480 1600 of the upper container was a hard design problem; it was required for functional use but supposed an undercut area involving slides in the mould. Part volume was adapted and different aesthetic forms appearedfeasible conjunction of the possible thick- ness by manufacture with the thickness and forms by mechanical resistance. In this step, finite analysis, solid 3D design and filling simulation were made simultane- ously (Figs. 3 and 4). The final part dimensions are shown in Table 3. With these basic magnitudes calculated in these four steps, design team had an initial point for the final drawing of and the inclusion of the elements of details like down of output angles, radios, position of acces- of the set (cork, skid, etc.). Industrial flow analysis was in definitive way, fixing optimum positions for manifold orking together with the mould maker, Kyowa Industrial y with mould plants in the USA, Japan and Mexico. The main aspects of the process and their simulations details cannot be presented in order to protect indus- know-how) are: Model of the figure with geometries type 2.5D. Location of the entry points to the cavity. The use of race tracks for a better control of the filling was considered, following rheological design rule for simultaneous end of filling at the end of the cavity (avoiding over-pack effect), especially considering the border shape with semicircular areas. Optimal conditions of process: the selection of temper- ature and its relation with thickness and cycle strongly conditioned the permissible values for the design. Values between 210 and 250 C were evaluated. at ejection and cooling lines layout. 18 Processing Fig. mould. 4. tests ( is lated because gradients could 5. J. Aisa et al. / Journal of Materials 5. Real container model used for testing industrial conditions in 2400 l The adjustment of the filling form by means of the cor- rect programming of speeds became essential. At constant speed profile, the increase of pressure-supposed values of inadmissible force of closing by the limitation imposed to the dimensions of the machine. In the final arrange- ment for container mould, several ram speed stages were recommended. This procedure was experimentally validated with real using already existing smaller dimension container Fig. 5). Typical ram speed profile calculated with CAE techniques shown in Fig. 6, but this “function” cannot be trans- to the injection machine without practical arrangements, hydraulic systems are not able to follow all those exactly. Anyway, around 15% less clamping force be achieved after this optimisation procedure. After the filling possibilities were fixed, this was verified with a new numerical model by the mould maker from the initial ideas sent by the design equipment and with the final hot runner system data necessary for the mould. Fig. 6. Theoretical ram speed profile from computer results. 6. detecting of cessing (2025 ously Technology 175 (2006) 1519 Fig. 7. Real sample in CONTENUR assembly plant. The sequential technology was considered as a possibil- ity with the purpose of reducing filling pressure, but the practical arrangement, the maintenance and possible shut- downs underestimated their use. Finally, the analyses of cooling of the mould, packing and warpage induced by the process were developed. In this way, different constructive materials were used according to their thermal conductivity, adjusting cooling layout pro- vided by Kyowa Industrial Company. Final mould weight was higher than 150,000 kg (up to 150 metric tonnes). Actually, more than 6000 pieces were made without any problem in the injection, expulsion or the life the component in good condition (Figs. 7 and 8), and pro- rates are similar with other existing 1000 l containers parts per hour). Other components were simultane- designed and, in fact, it was more complicated to get Fig. 8. Complete 2400 l waste container, including all components. J. Aisa et al. / Journal of Materials Processing Technology 175 (2006) 1519 19 fine results, for example, in container lids, obviously smaller than the body. For the authors, the final conclusion is that CAE tools were basic in design process, and also compared with knowledge and real test using similar moulds. Acknowledgements The authors want to extend their gratitude to T.I.I.P. a.i.T.I.I.P. Group and CONTENUR Technical Staff, for their support and facilities to reach this final goal and very special thanks to Dr. Castany for all their “know-how” on plastic injection moulding process and design, exposed in many training References 1 C. Austin, Lean moulding: faster = cheaper = better, in: J.F. Stevenson (Ed.), Innovation in Polymer Processing Moulding, Hanser, 1996. 2 H. Gastrow, Injection Moulds: 102 Proven Designs, Hanser, 1983. 3 M. Ezrin, Plastics Failure Guide: Cause and Prevention, Hanser, 1996. 4 European Norm EN 12574: stationary waste containers: containers with a capacity from 1700 l to 5000 l, CEN/TC 183/WG1, 2000. 5 G. Menges, P. Mohren, How to Make Injection Moulds, Hanser, 1996. 6 J. Fuentelsaz, Metodologa para el diseno de componentes de plastico inyectados, Doctoral Thesis, University of Zaragoza, Spain, June, 1993. 7 F.J. Castany, F. Serraller, I. Clavera, C. Javierre, Methodology in gas assisted moulding of plastics, J. Mater. Process. Technol. 143144 (2003) 214218. 8 F.J. Castany, J. Fuentelsaz, F. Serraller, J. Llado, F. Martnez, Sim- ulacion aplicada al diseno y produccion de componentes inyectados, courses and seminars around the world. Plasticos Universales, 35, num. 11, September, 1991.