油菜幼苗移栽機栽植系統(tǒng)結(jié)構(gòu)設(shè)計【穴盤苗移栽】
油菜幼苗移栽機栽植系統(tǒng)結(jié)構(gòu)設(shè)計【穴盤苗移栽】,穴盤苗移栽,油菜幼苗移栽機栽植系統(tǒng)結(jié)構(gòu)設(shè)計【穴盤苗移栽】,油菜,幼苗,移栽,栽植,系統(tǒng),結(jié)構(gòu)設(shè)計,穴盤苗
湖 南 農(nóng) 業(yè) 大 學(xué)
全日制普通本科生畢業(yè)設(shè)計
油菜幼苗移栽機栽植系統(tǒng)結(jié)構(gòu)設(shè)計
THE PLANTING STRUCTURE DESIGN OF RAPE SEEDING TRANSPLANTER
學(xué)生姓名:
學(xué) 號:
年級專業(yè)及班級:
指導(dǎo)老師及職稱: 教授
學(xué) 院:工學(xué)院
湖南·長沙
提交日期:2013年5月
1 油菜幼苗移栽機栽植系統(tǒng)結(jié)構(gòu)設(shè)計 學(xué) 生: 指導(dǎo)老師: (湖南農(nóng)業(yè)大學(xué)工學(xué)院,長沙 410128) 摘 要 :本設(shè)計根據(jù)作物育苗移栽的農(nóng)藝要求,為實現(xiàn)穴盤苗的高效移栽,通過分析國內(nèi) 外研究現(xiàn)狀及發(fā)展趨勢,找出其中存在問題,并經(jīng)過一系列的假設(shè)和求證,在借鑒已有成果和指 導(dǎo)老師精心幫助的基礎(chǔ)上,設(shè)計了一種新型的油菜幼苗移栽機栽植系統(tǒng)結(jié)構(gòu)。結(jié)構(gòu)以鋼鐵為主要 材料來源,能實現(xiàn)穴盤苗的高速移栽并能解決傷苗率高等問題,能加快我國實現(xiàn)農(nóng)業(yè)機械化的進 程,減輕農(nóng)民朋友的勞動強度,為解決“三農(nóng)問題”貢獻自己的一份力量。 關(guān)鍵詞:油菜; 穴盤苗; 移栽機; 栽植系統(tǒng) The planting structure design of rape seeding transplanter Student::Qiu Fengdeng Tutor:Wu Mingliang (College of engineering, Hunan Agricultural University, Changsha 410128, China) Abstract: Based on agricultural requirement of seedling transplantation, this paper is designed to improve the transplant efficiency of plug seedling through analyzing problems in research status and development trend at home and abroad. Boasted existing findings and assistance from my supervisor, finally, a new transplant system structure for rape seedling transplanter is devised here via various assumptions and demonstrations. With Steel as the main material sources, the structure can promote the transplant efficiency and decrease the rate of injured seedling, accelerate Chinas agricultural mechanization, reduce farmers labor intensity and may help address the issues concerning agriculture, countryside and farmers. Keywords: Rape ; Anakiwa Nae ; transplanter ; planting system 1 緒論 1.1 研究的意義 油菜是我國的主要油料作物,其種植面積已超過1.2億畝,我國是世界最大的油 菜產(chǎn)區(qū),油菜在我國是僅次于稻、麥、玉米、大豆的第五大作物;同時,油菜是“用 地養(yǎng)地”相結(jié)合作物,與糧食爭地的矛盾較少,不僅有利于增加土壤肥力,而且油菜 2 在后種水稻比小麥后種水稻可增產(chǎn)15%。目前,油菜和很多其他作物一樣,其栽植主 要有直播和移栽兩大模式。與直播相比,移栽模式具有很多明顯的優(yōu)勢 21: 1、移栽可以大幅提高作物產(chǎn)量,改善作物品質(zhì); 2、移栽是解決多茬作物接茬矛盾,提高復(fù)種指數(shù)的最重要甚至是唯一的方式; 3、直播油菜根系分布往往較淺且莖細(xì),結(jié)果期間若遇大風(fēng)大雨,往往易發(fā)生倒 伏,移栽后的則不易發(fā)生倒伏 【3】 ; 4、移栽作物還可以有效避免苗期干旱、雨雪和霜凍等自然災(zāi)害。 另一方面,油菜移栽是勞動強度極大的一項農(nóng)事活動,但長期以來油菜移栽均以 人工為主,不僅勞動強度大,而且在職質(zhì)量差,生產(chǎn)率低,成本高,嚴(yán)重影響農(nóng)民種 植油菜的積極性和油菜種植面積的進一步擴大,顯然,實現(xiàn)油菜移栽機械化已成為油 菜種植生產(chǎn)的迫切需要。從我國油菜整個種植過程的機械化水平來看,油菜移栽前的 機械耕整、開溝。植保和施肥等環(huán)節(jié)機械化基本解決,油菜收獲機械化也有了較大發(fā) 展,但油菜移栽機械化一直沒有進展,油菜移栽機械花成為制約整個油菜種植業(yè)發(fā)展 的瓶頸 【8】 。因此盡快攻克油菜移栽機械化技術(shù)難關(guān)成為當(dāng)務(wù)之急。 1.2 國內(nèi)外研究現(xiàn)狀 1.2.1 國外移栽機發(fā)展概況 有關(guān)資料顯示英國、法國、美國和日本等國在自動移栽機的研制方面取得了一定 的成績,法國在20世紀(jì)60年代研制出“皮卡多”自動栽植機 【1】 ,用于裸苗栽植,日 本在20世紀(jì)70年代研制出 TPA-1型全自動栽植機,用于缽苗栽植,大大提高了功效, 減輕了勞動強度。隨著缽體苗育苗技術(shù)的日趨完善,缽苗移栽技術(shù)已在國外被廣泛地 應(yīng)用。國外發(fā)達(dá)國家本領(lǐng)域的研究與應(yīng)用起步較早,用于種植蔬菜和經(jīng)濟作物,進而 用于玉米等糧食作物,移栽技術(shù)和設(shè)備發(fā)展很快 【12】 。國外缽苗移植機械的種類較多, 主要有3種: 一為鉗夾式缽苗移栽機 23; 二為導(dǎo)苗管式缽苗移栽機,其又可細(xì)分為推落苗式、指落苗式直播落苗式; 三為籃式缽苗移栽機。 1.2.2 國內(nèi)移栽機發(fā)展概況 目前國內(nèi)很多單位正在從事油菜移栽機的研究工作,主要是引進和借鑒國外臺移 栽機的基礎(chǔ)上進行改進仿造 【4】 。我國目前研制和推廣的栽植機基本上是半自動化機 型,在栽植過程中,首先由人工將幼苗喂入到移栽機構(gòu),再由機具完成開溝、放苗、 扶苗、覆土和鎮(zhèn)壓等工作 【2】 。全自動移栽機是由人工或機械喂入一組幼苗,由移栽 3 機自動完成分苗和栽植工作。我國目前移栽機主要有以下幾類 【7】 : 一、鉗夾式移栽機,主要代表為2ZT 型移栽機和 UT-2型移栽機; 二、撓性圓盤式栽植機; 三、吊籃式栽植機; 四、帶式栽植機; 五、導(dǎo)苗管式栽植機。 1.2.3 栽植系統(tǒng)的發(fā)展現(xiàn)狀 栽植機構(gòu)及配套栽植器是移栽機的核心部件 【6】 ,現(xiàn)在的應(yīng)用比較廣泛的栽植器 主要由以下幾種: 1)鉗夾式栽植器; 2)圓盤式栽植器; 3)吊環(huán)式栽植器; 4) 導(dǎo)苗管式栽植器。 1.3 國內(nèi)外移栽機械化發(fā)展存在的主要問題 經(jīng)過 40 年的研究和推廣,我國的旱地栽植機械有了較大的進展,但是目前仍然 處在起步階段,在許多方面還是空白或存在問題 24: 1、移栽機與配套技術(shù)機具脫節(jié); 2、機具高速作業(yè)時易出現(xiàn)漏苗、缺苗和傷苗等情況,可靠性差; 3、機具自動化程度尚待提高。 所以,我研究的栽植系統(tǒng)意在改善上述問題,推進我國油菜種植機械化盡份微薄 之力。 2 方案設(shè)計 2.1 國內(nèi)外方案研究 移栽機械是育苗技術(shù)的關(guān)鍵設(shè)備,只有移栽技術(shù)過硬,才能降低制造成本,成本 降低了才有可能使移栽機械得到普及 25。我國在70年代中期就研制了第一臺玉米移 栽的機械之后繼續(xù)投入大量的精力和人力。又開發(fā)和引用了多種適用于蔬菜,棉花, 玉米,甜菜等經(jīng)濟作物的栽植機械,但均因為育苗技術(shù)太落后,配套性能差,綜合效 益低等原因,均未得到推廣應(yīng)用。 近幾年來,隨著育苗技術(shù)的發(fā)展以及勞動力成本的上升,推動了栽植機械的研 制開發(fā)工作,又有多種新型栽植機的出現(xiàn)。但從總體上講,目前我國研制使用的移栽 機械都是半自動式的。全自動的移栽機因結(jié)構(gòu)復(fù)雜,成本高,而僅處在研究起步階段。 4 而從國外進口的移栽機械又由于和中國的農(nóng)業(yè)大環(huán)境不能夠很好的融合而沒有得到認(rèn) 可 【15】 。所以為了推廣油菜的種植,提高農(nóng)民種植的積極性,就必須有一種價格既經(jīng) 濟又能夠大大降低農(nóng)民的勞動強度的移栽機的出世。為此,我們可以從國內(nèi)外現(xiàn)有的 移栽機入手,取其精華,優(yōu)化設(shè)計。 歸納起來,我國研制的或使用的半自動的移栽機及國外的移栽機不外乎有以下幾 種結(jié)構(gòu)形式: 2.1.1 鉗夾式移栽機 依靠人工將秧苗喂入到在轉(zhuǎn)動輪上的鉗夾,秧苗被夾持著強制性隨著轉(zhuǎn)動,到達(dá) 苗溝時,鉗夾張開,將秧苗插入到土層之中。隨著秧夾的轉(zhuǎn)動,秧苗和秧夾就會被分 開,于是秧苗被栽植到土壤中。這種機械的結(jié)構(gòu)簡單,株距和栽植深度穩(wěn)定,但作業(yè) 速度低,一般為 3045 株/分,而且容易夾傷秧苗,栽植的秧苗容易傾倒和被土壤埋 沒。這種機型由于栽植速度慢而沒有得到推廣應(yīng)用。鉗夾式移栽機典型代表是 1979 年山西省運城地區(qū)農(nóng)機所研制的 2ZMB-2 型缽苗移栽機。 2.1.2 鏈夾式栽植機 工作原理與鉗夾式移栽機相似,栽植部件安裝在環(huán)形鏈條上,秧苗由人工喂到鏈 夾上,由鏈夾將秧苗栽植到土壤中 【11】 。由于只改變了傳動方式,因此其性能與鉗夾 式移栽機相同。如黑龍江省農(nóng)墾科學(xué)院 2Z-2 型玉米缽苗移栽機。 2.1.3 撓性圓盤移栽機 此移栽機的主要特點是夾持秧苗可以不受鉗夾或鏈夾數(shù)量的限制,因此對株距 的適應(yīng)姓能好。人工將秧苗放置到兩片可以變形的撓性圓盤內(nèi),由圓盤的轉(zhuǎn)動將秧苗 栽植到土壤中,完成栽植過程 22。圓盤一般采用橡膠材料制成,結(jié)構(gòu)簡單實用,但 株距和栽植深度不穩(wěn)定,也容易出現(xiàn)埋苗 【16】 。同時,撓性圓盤的受命較短。如 農(nóng)科院農(nóng)機所的 2ZT-2 型紙筒甜菜移栽機 【18】 。 2.1.4 吊籃式移栽機 吊籃式移栽機主要適合缽苗移栽,由人工將缽苗放入到型如吊籃式的栽植爪內(nèi), 栽植爪隨著機構(gòu)轉(zhuǎn)動,當(dāng)快要到達(dá)投苗點時,栽植爪開始被強制性打開,缽苗開始脫 落,在拖拉機的前進速度和缽苗的下落速度的合成速度在水平方向等于零時,缽苗開 始被定點栽植(當(dāng)然,這種現(xiàn)象只可能在理論上實現(xiàn),我們所要做的就是使缽苗的栽 植時刻盡可能的接近這個點) 【13】 。隨著撞在偏心圓盤上的栽植爪進入開溝器開好的溝 內(nèi)。此時。在固定軌道的作用下。栽植爪的下部張開落下并立即被覆土定植,而栽植 爪在離開固定軌道后自動關(guān)閉。 2.1.5 導(dǎo)苗管式移栽機 在前面的幾種移栽機中秧苗或缽苗的運動都不是自由的,雞都是被強制性做著運 5 動,所以很容易傷到苗,而導(dǎo)苗管式移栽機與上述幾種移栽機相比較就有所不同了。 秧苗在導(dǎo)苗管式移栽機的運動是自由的,不是強制性的,因此不易傷苗。另一方面, 喂入器是由多個水平轉(zhuǎn)動的喂入桶或者是較長的輸送帶構(gòu)成,人工喂苗時,不必像上 述移栽機一樣逐個喂入。人只需往喂入器里面不斷的放苗即可保證露苗現(xiàn)象的發(fā)生, 所以其喂如速度可以大大提高,作業(yè)速度能達(dá)到每分鐘 6070 株,比鉗甘式移栽機 提高 3050。這種移栽機的優(yōu)點是速度快、效率高,但缺點也很明顯,那就是不 易控制缽苗的栽直質(zhì)量且結(jié)構(gòu)比較復(fù)雜。如中國農(nóng)業(yè)大學(xué)的 2ZDF 型導(dǎo)苗管式移栽機。 2.1.6 帶式栽植機 帶式栽植機由水平輸送帶和傾斜輸送帶組成,兩帶的運動速度不同,缽苗在水平 輸送帶上直立前進,在水平輸送帶末端翻倒在傾斜輸送帶上,運動到傾斜輸送帶末端, 缽苗翻轉(zhuǎn)直立落到苗溝中 【19】 。這種栽植機機構(gòu)簡單,栽植頻率高達(dá) 240 株/分,但是, 在工作可靠性方面需要進一步改進。如山東工程學(xué)院的 2ZG-2 型缽苗移栽機。 目前的移栽機由于大部分是半自動化,且是人工喂缽,栽植速度有限,喂入頻度 不能超過 60 株/分,否則就會使人感到緊張,容易出現(xiàn)漏苗現(xiàn)象,勞動強度大,生產(chǎn) 率不高,僅為人工栽植的 2-5 倍。全自動化移栽機,理論上可以提高喂苗頻率,但由 于結(jié)構(gòu)復(fù)雜,制造成本高,而且對育苗技術(shù)要求高,因此,仍處于試驗階段。移栽質(zhì) 量不穩(wěn)定,尤其是沒有扶苗裝置的移栽機,秧苗的直立度、株距、深度等都不能完全 達(dá)到農(nóng)業(yè)技術(shù)要求 【17】 。 2.2 方案的設(shè)計 在研究完國內(nèi)外移栽機栽植系統(tǒng)的優(yōu)缺點后,如何盡可能去將自己的想法應(yīng)用 于實踐中,從而去改善這些已存在移栽機不足之處,成為本方案選擇的主要意義所在。 新型移栽機意在解決的主要問題在于幼苗的入土過程要盡量消除有傷苗嫌疑的裝置部 分,而在入土后未覆土之前要保證幼苗的直立度,不要東倒西歪 【9】 ,為了解決這個 問題,在本設(shè)計的新型栽植系統(tǒng)中特確定以一定深度和直徑的圓孔作為苗穴,而幼苗 的入土過程是通過一長落苗筒實現(xiàn)的,而為了保證落苗的精確性,特將主動軸與輸出 軸之間的運動傳動比給定為 1:1,而將落苗裝置的運動設(shè)計為圓周運動;入完秒后, 將覆土裝置設(shè)計為鎮(zhèn)壓輪覆土方式,覆完土后就將澆水裝置匹配于栽植系統(tǒng)中。所以, 可將總體方案的設(shè)計任務(wù)定為以下 4 個部分:打孔、放苗、覆土和澆水。 2.2.1 總體結(jié)構(gòu)的設(shè)計 其中,為了保證幼苗的立苗度,本設(shè)計采用打孔為苗穴的方式,根據(jù)穴盤苗的具 體尺寸大小和栽插深度來決定打孔裝置的具體尺寸,其中打孔深度為 5 厘米,打孔直 6 徑為 5 厘米。栽植系統(tǒng)裝在四方體方形框內(nèi),其簡單示意圖如下: 圖 1 栽植系統(tǒng)主要工作部分 Figure 1 planting system working part 2.2.2 打孔裝置的設(shè)計 其中,打孔部分采用軸為中心,將打孔器 【10】 焊接于中心軸上,根據(jù)株距距確定 每個打孔裝置的位置,行距確定每個打孔器之間的間隔及其在軸上的位置,軸的尾端 用軸承和軸承座將其固定于鐵架上,打孔裝置簡易示意圖如下: 7 圖 2 打孔裝置 Figure 2 punch device 2.2.3 運動的傳動設(shè)計 打孔為苗穴的移栽方式最大難題是如何保證幼苗的放置孔內(nèi)時機能與打孔時機 保持同步,解決這一難題的前提是要將打孔裝置的運動同比轉(zhuǎn)化至放苗裝置。其中第 一傳動部分可用鏈傳動將打孔軸的運動形式同比傳至另一傳動軸;第二部分是通過第 二根傳動軸將打孔裝置的運動通過錐齒輪變向傳動給分別位于放苗裝置的輸出軸上, 以此來實現(xiàn)與打孔裝置同步放苗的預(yù)期目標(biāo)。其簡單示意圖如下: 圖 3 運動傳動圖 8 Figure 3 motion transmission diagram 2.2.4 放苗裝置的設(shè)計 打孔軸上每個打孔器上裝有 6 個打尖端,打孔軸上的運動是以 1:1 的傳動比傳送 至輸出軸上的,為了保證放苗速度與打孔速度保持一致,確定放苗裝置是以中心軸為 中心,以一定直徑的圓為分布軌跡,6 個落苗筒陣列分布于圓的圓邊上,同時為了實 現(xiàn)幼苗的落入位置與打孔位置一致,特于落苗筒的底端有一活動擋板,活動擋板與位 于落苗筒下的落苗擋板以極小間距配合,當(dāng)落苗器跟著輸出軸旋轉(zhuǎn)到落苗擋板上的缺 口部分時活動擋板會自動開啟,幼苗即會順著落苗圓筒自動掉入秧穴內(nèi) 【20】 。其簡單 示意圖如下: 圖 4 放苗裝置 Figure 4 Plants putting device 2.2.5 覆土裝置的設(shè)計 覆土裝置是采用現(xiàn)已廣泛應(yīng)用的 V 形雙輪,相比較裝有開溝機的移栽機上的雙輪, 本設(shè)計由于裝有打孔裝置,所以雙輪的尺寸不是很大,它是通過空心鐵棒連接于本裝 置的后架上,且每個覆土輪與水平面成 60角分布。由上可知,幼苗的入土深度最多 為 5 厘米,為了保證秧苗的最佳生長環(huán)境,擬定覆土輪工作時的入土深度為 3 厘米。 其簡單示意圖如下: 9 圖 5 覆土裝置 Figure 5 casing device 2.2.6 澆水裝置的設(shè)計 放完苗覆完土,接下來的就是澆水了。澆水裝置采用了簡單的水管澆水方式, 原理為在整個機架的上方固定一個大水桶,在水桶口引出一根較大水管,然后在適當(dāng) 位置分成 6 根小水管分別固定在在每個鎮(zhèn)壓輪后上方空間內(nèi),澆水后的鎮(zhèn)壓輪軌跡與 幼苗所在凸起部分形成交替隔溝,使其澆水更合理。其簡單示意圖如下: 1.水桶 2.水管 圖 6 澆水裝置 Figure 6 watering device 2.3 牽引裝置的選擇 由于栽植系統(tǒng)是以打孔軸的旋轉(zhuǎn)運動帶動后部工作裝置進行移栽工作,而打孔軸 的運動是依靠牽引裝置的牽引力實現(xiàn)旋轉(zhuǎn)運動的,所以選定拖拉機作為移栽系統(tǒng)的動 力部分,而整個移栽機的組成部分還包括旋耕機、取苗裝置和送苗裝置等,這里就不 10 確定拖拉機的具體型號了。而移栽系統(tǒng)與動力裝置的連接方式采用一直廣泛使用的三 點懸掛裝置,同時,可在三點懸掛裝置加根可拆裝的支撐桿,以便無需使用移栽系統(tǒng) 時拆下包養(yǎng)。其簡單的示意圖如下: 圖 7 三點懸掛裝置 Figure 7 triangular suspension 3 系統(tǒng)零件的設(shè)計和計算 3.1 打孔裝置的尺寸計算 根據(jù)要求,打孔深度為 5 厘米,打孔直徑為 5 厘米;株距為 20 厘米,行距為 30 厘米,每次作業(yè)為 6 行。由此,給定打孔裝置的工作半徑為 r。 圖 8 打孔器 Figure 8 Hole puncher 11 如圖所示,由于株距為 20 厘米,所以虛線圓周長: L=620cm=120cm 所以虛線圓半徑: r=120219.1cm 其中打孔深度為 5 厘米,孔直徑為 5 厘米,所以打孔圓柱加尖頭部分總長為 5 厘米, 圓柱部分直徑為 5 厘米;加固圓形方條的內(nèi)徑指定為 90 厘米,外徑指定為 100 厘米。 3.2 軸的設(shè)計與校核 3.2.1 主從動軸的的設(shè)計與校核 由上文可知,移栽裝置的前進速度為 720 米每小時,而打孔裝置的最大周長為 120 厘米,由此主動軸的轉(zhuǎn)速為 600r/h。由于打孔裝置打孔是靠移栽機構(gòu)的重力下壓 實現(xiàn),所以取每個打孔裝置打一個孔所需力為 500N,一次性實現(xiàn)打 6 個孔所需力: F=6500=3000N 所以,打孔裝置瞬時所需功率 P=FV=30000.2=600W 于是打孔裝置所在軸的材料選用 45 鋼調(diào)質(zhì)處理,軸的最小直徑 d1C =47.2mm (1) 3nb 考慮到鍵槽對軸強度削弱的影響,軸徑應(yīng)加大 5%,則 d1=1.0547.2=49.6mm 由于從動軸運動必須與主動軸保持同步,所以傳動比為 1:1,但從動軸由于需要需加 6 鍵槽,所以從動軸最小直徑 d2=47.21.056=69.8mm 所以,取定主動軸的直徑為 75mm。 查表可知,選定軸承為深溝球軸承 6014 GB/T276-1994,其寬度為 20 厘米,又移栽 行距為 30cm, l1=3005=1500mm 取兩邊的打孔器中線位置與軸承中線位置各 50mm,所以主動軸的的長度 L=1500+250+220=1640mm 所以主動軸的體積 V=3.1437.5 21640=7441cm3 軸的材料選定為 45 鋼,45 鋼的密度查表可知近似為 7.9g/cm3 ,所以主動軸的質(zhì)量為 12 M=74417.9=58784g=58.784kg 所以,主動軸的重力為 G=Mg588N,因此,初步給定栽植系統(tǒng)所受重力為 4000N,軸的 轉(zhuǎn)速為 10r/min ,打孔軸所受功率為 P=600w,所以 轉(zhuǎn)矩 T=9550P/n=573KN/m (2) 取打孔裝置共為 G=600N,軸上受到水平力 F=400N,并且假設(shè)重量在軸上呈線性分布 1.繪制軸的受力簡圖: 2.求水平支反力: FAH=FBH=F/2=200N (3) 3.繪制水平面彎矩圖: MCH=MAHLAB/2=1.422X105(N.mm) (4) 4.求垂直支反力:由 得0BM FAVLAC-FCVLBC=0 (5) 由 得 F AV+FCV-G=O0 求得 F AV=175N FCV=225N 5.繪制垂直面彎矩圖:截面 B 的彎矩 MAC=MBC=FACXLAC=1.544X105(N.mm) (6) 6.繪制合成彎矩圖:根據(jù) M= 得VH2 (7).(10522mNMBV 7.繪制轉(zhuǎn)矩圖: T=9550P/n=573KN/m (8) 8.繪制當(dāng)量彎矩圖: (9)(22Te 當(dāng)由當(dāng)量彎矩圖和軸的結(jié)構(gòu)圖可知,B 處和 D 處最優(yōu)可能是危險截面,應(yīng)該計算 器當(dāng)量彎矩。此處可將軸的扭轉(zhuǎn)剪應(yīng)力看作脈動循環(huán),取 0.6,則 B 截面: =2.766x105(N.mm) (10)(22Me D 截面: =2.453x105(N.mm) (11)d 9.校核危險截面處的強度: 13 B 截面: (12) MPabPadMWCee 51)(3.01.0 762.4533 D 截面: (13)PabPaDee 51)(87.261.0 72.353 故軸的強度足夠。 圖 9 軸的受力分析與強度計算 Fig 9 The force analisis and strength calculation of shaft 3.2.2 導(dǎo)苗管旋轉(zhuǎn)軸的設(shè)計與校核 由于從動軸與 6 個導(dǎo)苗管軸連接,所以每個導(dǎo)苗管的承載功率為 P1=P/6=100W (13) 因此,旋轉(zhuǎn)軸直徑 d3=C =21.5mm (14)nb 14 考慮到鍵槽對軸強度削弱的影響,軸徑應(yīng)加大 5%,所以 d3=1.0521.5=22.6mm 因此,選定軸的直徑為 30mm。另外輸出軸的校核與主動軸的校核類似,在這里就不一 一校核了。 3.2.3 軸承的設(shè)計與校核 由上文可知,主動軸的最大直徑為 75mm,所以查表可知可選用 GB/T276-1994 中 的 0 尺寸系列的 6014 號軸承;從動軸的直徑與主動軸相同,故零件的選擇與主動軸 一致。 已知裝軸承處的軸徑為 70mm,轉(zhuǎn)速為 10r/min,選用深溝球軸承 6214,C 0=30.5KN: 對深溝球軸承,其徑向基本額定載荷 (15) 16)0(htpLnfPCr 式中 基本額定動載荷,查表 8-23 得rC =30.5kNr 載荷系數(shù),查表取 =1pf pf 當(dāng)量動載荷,NP 基本額定壽命,本機預(yù)設(shè)壽命 =4000hhLhL 軸承轉(zhuǎn)速,r/minn 壽命指數(shù),對球軸承 =3 P=7429.4N 故在規(guī)定條件下,6014 軸承可用;以同樣方法,校核軸承 6005 同樣可用。 3.3 傳動部分設(shè)計 本移栽裝置必須保持打一個孔栽一棵苗的精度,所以主動軸的運動形式必須與導(dǎo) 苗管處的旋轉(zhuǎn)軸運動保持一致。在主動軸與從動軸之間選擇鏈傳動,并以 1:1 為傳動 比。主從動軸的安裝位置是和地面保持平行的,而導(dǎo)苗管旋轉(zhuǎn)軸是垂直于地面的,要 想實現(xiàn)運動的轉(zhuǎn)換必須是用錐齒輪,而每排的 6 個導(dǎo)苗管必須保持同步,因此實現(xiàn)運 動轉(zhuǎn)換的錐齒輪必須分度圓直徑一致。 3.3.1 直齒錐齒輪的設(shè)計 15 根據(jù)本移栽系統(tǒng)的要求及查表可知,選定錐齒輪的模數(shù) m=4,齒數(shù) z=30,由此可 知: 齒頂高 (16) mha4* 齒根高 (17)cf 5)( d=mz=304=120mm (18) df=d-2hfcos=113mm (19) da=d+2hacos=125.6mm (20) (21)4.2rctnRhaa (22)03rtff a=+ a=47.4 (23) f=- f=42 (24)1tani 45,9012 0212其 中 式中: 分別為齒頂角和齒根角 ; 為分度圓錐角; 分別為頂錐角和根錐角。f, fa, 由此可得下表: 表 1 錐齒輪主要參數(shù)表 Table 1 bevel gear main parameters m z df df a f 4 30 125.6 113 2.4 3 從動軸與輸出軸之間的傳動比為 1:1,所以輸出軸上的錐齒輪主要參數(shù)和主動軸 上的錐齒輪是一致的。 3.3.2 直齒錐齒輪的校核 軸夾角為 的一對鋼制直齒圓錐齒輪的齒面接觸強度驗算公式為09 (25) ubKTRH1 32)(5.03 16 其中: (26)mzmR86.4221 (27)b.6 (28)NnPT.2.5990 其中 K=2.3,=1。 =18.86MPa =550MPa (29)ubKTRH1 32)(5.03H 齒面的接觸疲勞強度符合設(shè)計要求。 根據(jù)當(dāng)量圓柱齒輪,可得齒根彎曲疲勞強度驗算式 1212zbmYKTbdYsFmsFF (30) 43.268.37.mCOSZS,為 平 均 模 數(shù) ,其 中 FmsFmsFF MPazbYKTbdY45211 (32) 齒根的彎曲疲勞強度符合要求。 3.3.3 軸中心距的計算 由上文可知,株距為 20cm,考慮到打孔器的直徑寬度和落苗器的直徑,初步給定 兩軸的中心距為兩倍株距 40cm。 另一方面,當(dāng)幼苗從落苗筒底端落下時,會以一定的初速度向下落,其中初速度 可以分解為落苗裝置所在圓平面內(nèi)直徑方向和切向方向兩個速度。 對于直徑方向速度來說,系統(tǒng)是以 20cm/s 的速度前進的,幼苗的下落高度為 20cm,所以由位移與速度的關(guān)系可知: s=v0t+at2 (33) 式中,由于系統(tǒng)是水平前行的,所以初始速度 v0=0;取 a=10,s=0.2m,所以 0.2=5t (34) t=0.2s 因此,幼苗的前拋距離為 s1=vt=4cm (35) 17 對于切線方向的速度來說,幼苗落入秒空所需時間為 0.2 秒,落苗筒中心所在平 面圓的半徑為 7cm,而平面圓的角速度和打孔器的角速度是一樣的,所以平面圓切向 速度與打孔器切向速度之比為 i=701910.35 所以,平面圓上的切向速度 v1=0.35v=7cm/s (36) 因此,幼苗的橫拋距離為 s2= v1t=1.4cm (37) 又因為落苗筒是以逆時鐘旋轉(zhuǎn)且落苗擋板的傾斜方向為速度的相反方向,所以幼苗在 下落前的位置應(yīng)在落苗筒的靠左位置,而落苗筒的直徑為 4cm,足以覆蓋由幼苗下落 的這段時間內(nèi)產(chǎn)生的與苗穴位置的相對誤差。 另一方面來說,由于系統(tǒng)的行進速度較大為 20cm/s,而秧苗在下落過程中產(chǎn)生的 徑向位移為 4cm,而落苗筒直徑為 4cm,不能完全覆蓋幼苗的徑向位移,覆蓋值為 20mm,所以確定主動軸與從動軸的中心距為 420mm。 3.3.4 鏈傳動的設(shè)計 由系統(tǒng)要求和查表可知,選定鏈輪的主要參數(shù)如下表: 表 2 鏈輪主要參數(shù)表 Table 2 sprocket main parameters 名稱 符號 數(shù)值 適配鏈號 RS80 節(jié)距 P 25.4 滾子外徑 dr 15.88 齒數(shù) Z 30 梁祝測量矩 Mr 185.82 量柱直徑 dR 15.88 4 結(jié)論 畢業(yè)設(shè)計是我們大學(xué)生涯中最后一個極其重要的環(huán)節(jié),是對我們大學(xué)四年所學(xué)知 識的一個全面性考察,是教會我們將理論知識與實際相結(jié)合的一次重要實踐機會。通 過三個多月的不斷嘗試和探索,關(guān)于油菜幼苗移栽機栽植系統(tǒng)結(jié)構(gòu)設(shè)計的畢業(yè)設(shè) 計得以順利完成。當(dāng)然,在這三個月的設(shè)計時間內(nèi),我遇到了諸多難題,比如說系統(tǒng) 18 方案的擬定、幼苗的直立度保證問題和幼苗的精確入孔問題等,但經(jīng)過查閱資料、請 教老師和同學(xué)探討研究,最后還是順利解決了問題。 所以,經(jīng)過此次設(shè)計過程,讓我深刻體會到自身理論知識的匱乏和實踐經(jīng)驗的嚴(yán) 重不足,也讓我感受到了農(nóng)機這一行業(yè)的廣闊和嚴(yán)謹(jǐn)和創(chuàng)新能力的重要性;當(dāng)然,設(shè) 計過程中讓我體會到在面對問題時培養(yǎng)自己解決問題能力的重要性,也讓我體會到集 思廣益的諸般好處,因為在自己獨立思考并翻閱各種材料以及和老師同學(xué)們的交流中 讓我增長了見識、開拓了眼界,這將會是我在今后的人生道路上的一筆巨大財富。 當(dāng)然,在本次設(shè)計中,由于作者水平有限以及其他諸般因素的影響,本設(shè)計肯定 存在較多的錯誤和不足之處,還望各位老師和同學(xué)多加批評和指正。 參考文獻 1 尹業(yè)宏,孫金風(fēng),安寧,等.同步扶正棉苗移栽機設(shè)計J.湖北農(nóng)業(yè)科學(xué),2010,29(1):194-196. 2 丁文芹,毛罕平,胡建平,等.穴盤苗自動移栽機的結(jié)構(gòu)設(shè)計及運動仿真分析J.農(nóng)機化研究. 2011,(10):75-78. 3 官春云.冬油菜栽培新方法:機播機收、適度管理J.農(nóng)業(yè)技術(shù)與裝備.2008,(5):12-13. 4 封俊.論我國旱地栽植機械的開發(fā)前景和方向J.中國農(nóng)機化,2000,(4):12-13. 5 韓占全,封俊,曾愛軍.我國旱地栽植機械的現(xiàn)狀和發(fā)展前景J.現(xiàn)代農(nóng)機化,2000,(8):29-31. 6 陳風(fēng),陳永成,王維新.旱地移栽機現(xiàn)狀和發(fā)展趨勢J.農(nóng)機化研究,2005,(5):24-26. 7 武科,陳永成,畢新勝.幾種典型的移栽機J.農(nóng)機化,2009,(3):12-14. 8 湯修映,侯書林,朱玉龍,等.油菜移栽機械化技術(shù)研究進展J.農(nóng)機化研究,2010, (4):224- 227 9 張旭.齒輪齒條式膜上打孔機構(gòu)的研究J.農(nóng)業(yè)科技與裝備,2012,(3):33-35. 10 于建群,馬成林,左春圣,等.新型鏟式播種機打孔器的研究J.農(nóng)業(yè)機械學(xué)報,2001, 32(1): 38-41. 11 韓長杰,萬建林,楊宛章,等.2ZB-2 型移栽機的研制J. 農(nóng)業(yè)科技與裝備,2010,(6):51-52. 12 Gee-Clough, D. 1974. Single lug forcesfor a rigid open wheel on rice soils. UnpublishedPh.D.Dissertation, University of California,Davis,pp.109-142. 13 張麗華,邱立春,田素博.等. 指針夾緊式穴盤苗移栽爪設(shè)計J. 沈陽農(nóng)業(yè)大學(xué)學(xué)報, 201004,41(2):235237. 14 徐金蘇. 蔬菜缽苗移栽機構(gòu)的創(chuàng)新設(shè)計、參數(shù)優(yōu)化與動態(tài)仿真分析D.杭州:浙江理工大 學(xué),2009. 15 包春江,李寶筏,包文育.等. 水稻缽苗空氣整根氣吸式有序移栽機的研究J.農(nóng)業(yè)工程學(xué) 19 報, 2003,19(6):130-134. 16 高正路.2ZY 2 型油菜移栽機的設(shè)計J.江蘇農(nóng)機與農(nóng)藝,2001,(3):1012. 17 劉效亮,李其昀.育苗移栽機械化發(fā)展方向J.山東理工大學(xué)學(xué)報:自然科學(xué)版 2003,17(3): 108-110. 18 王君玲,高玉芝,李成華.蔬菜移栽生產(chǎn)機械化現(xiàn)狀與發(fā)展方向J.農(nóng)機化研究,2004(3): 42-43. 19 韓豹,馬守義,申建英.等.2Z-6 型作物秧苗移栽機的研制J.現(xiàn)代化農(nóng)業(yè),1998(7):31-33. 20 顧世康,封俊,曾愛軍. 導(dǎo)苗管式栽植機的試驗研究()導(dǎo)苗管式栽植機的改進設(shè)計與試驗 期刊論文 -農(nóng)業(yè)工程學(xué)報 1998(03) 21楊子萬,范云翔,孫廷琮,胡文河;空氣整根營養(yǎng)缽育苗秧盤對培育水稻稀植大秧苗的影響J. 農(nóng)業(yè)工程學(xué)報,1995 年 02 期 22 武科,陳永成,畢新勝. 育苗移栽機械化的發(fā)展趨勢J.農(nóng)機化研究,2010.32(1): 230-232 23 金誠謙,吳崇友,袁文勝. 鏈夾式移栽機栽植作業(yè)質(zhì)量影響因素分析J.農(nóng)業(yè)機械學(xué)報,2008. 2008.39(9):196 - 198 24 高玉芝,王君玲,李成華.我國旱地育苗移栽機械化面臨的問題及應(yīng)對措施J . 沈陽農(nóng)業(yè)大 學(xué)學(xué)報, 2004.35(2):145 147 25 董春旺,胡斌,等. 工廠化穴盤育苗精量播種裝置現(xiàn)狀及發(fā)展對策J . 農(nóng)機化研究, 2008.30(8):247 - 249 致 謝 歷時三個月的畢業(yè)設(shè)計即將走近尾聲,本設(shè)計的全部工作也馬上要圓滿完成, 回首這三個月的設(shè)計生活中,我要特別感謝吳明亮老師和向偉師兄在設(shè)計過程中的悉 心照料和大力指導(dǎo),在與他們的接觸中,讓我學(xué)到了在以后的生活中要有嚴(yán)謹(jǐn)?shù)目蒲?態(tài)度和踏實的工作作風(fēng),同時感謝同學(xué)們在設(shè)計過程中給出的寶貴建議和錯誤指正! 另一方面,在這四年的大學(xué)生活中,我得到了學(xué)校諸多老師和同學(xué)的幫助和指 導(dǎo),使我能逐步成長為一名合格的大學(xué)生,在此謹(jǐn)致以最誠摯的謝意。 20 目 錄 摘 要 .1 關(guān)鍵詞 .1 1 緒論 .1 1.1 研究的意義 .1 1.2 國內(nèi)外研究現(xiàn)狀 .2 1.2.1 國外移栽機發(fā)展概況 .2 1.2.2 國內(nèi)移栽機發(fā)展概況 .2 1.2.3 栽植系統(tǒng)的發(fā)展現(xiàn)狀 .3 1.3 國內(nèi)外移栽機械化發(fā)展存在的主要問題 .3 2 方案設(shè)計 .3 2.1 國內(nèi)外方案研究 .3 2.1.1 鉗夾式移栽機 .4 21 2.1.2 鏈夾式栽植機 .4 2.1.3 撓性圓盤移栽機 .4 2.1.4 吊籃式移栽機 .4 2.1.5 導(dǎo)苗管式移栽機 .4 2.1.6 帶式栽植機 .5 2.2 方案的設(shè)計 .5 2.2.1 總體結(jié)構(gòu)的設(shè)計 .5 2.2.2 打孔裝置的設(shè)計 .6 2.2.3 運動的傳動設(shè)計 .7 2.2.4 放苗裝置的設(shè)計 .8 2.2.5 覆土裝置的設(shè)計 .8 2.2.6 澆水裝置的設(shè)計 .9 2.3 牽引裝置的選擇 .9 3 系統(tǒng)零件的設(shè)計和計算 .10 3.1 打孔裝置的尺寸計算 .10 3.2 軸的設(shè)計與校核 .11 3.2.1 主從動軸的的設(shè)計與校核 .11 3.2.2 導(dǎo)苗管旋轉(zhuǎn)軸的設(shè)計與校核 .13 3.2.3 軸承的設(shè)計與校核 .14 3.3 傳動部分設(shè)計 .14 3.3.1 直齒錐齒輪的設(shè)計 .14 3.3.2 直齒錐齒輪的校核 .15 3.3.3 軸中心距的計算 .16 3.3.4 鏈傳動的設(shè)計 .17 22 4 結(jié)論 .17 參考文獻 .18 致 謝 .19 湖南農(nóng)業(yè)大學(xué)全日制普通本科生畢業(yè)論文(設(shè)計) 誠 信 聲 明 本人鄭重聲明:所呈交的本科畢業(yè)論文(設(shè)計)是本人在指導(dǎo)老師的指導(dǎo)下,進 行研究工作所取得的成果,成果不存在知識產(chǎn)權(quán)爭議。除文中已經(jīng)注明引用的內(nèi)容外, 本論文不含任何其他個人或集體已經(jīng)發(fā)表或撰寫過的作品成果。對本文的研究做出重 要貢獻的個人和集體在文中均作了明確的說明并表示了謝意。本人完全意識到本聲明 的法律結(jié)果由本人承擔(dān)。 畢業(yè)設(shè)計作者簽名: 年 月 日 23 systems. assessing the example of three tractors of the same category, which are exploited in climatic and soil conditions 1. Introduction for agricultural agricultural recognized careful technical, predicting ofcropproduction.Nowadays,theexistingmathematicaloptimiza- tion methods, supported by the high-performance computers, can efficiently resolve the optimization problems (Dette Duffy et al., 1994; Mileusnic, 2007; etc.). The formation of an optimal technical system in order to produce cheaper food, highly impacted reliability of tractors, its maintainability, and the functionality of the system. rounding conditions. Although in the same spirit, some authors have defined effectiveness somewhat differently. In (Ebramhimipour maintainabilityascapacityofthe systemforpreventionandfindingfailuresanddamages,forrenewing operating ability and functionality through technical attending and repairs; and functionality as the degree of fulfilling the functional requirements, namely the adjustment to environment, or more pre- cisely to the conditions in which the system operates. In the case of monitoring reliability and maintainability it is common to monitor the time picture of state (Fig. 1) according to their working conditions is obtained. The model can be used as cri- teria for decision making related to any procedure in purchasing, operation or maintenance of the system, for prediction of repair and maintenance costs. Quality and functionality of the proposed model is shown in effectiveness determination of agricultural machinery, precisely tractors. R. Miodragovic et al./Expert Systems with Applications 39 (2012) 89408946 8941 which the functions of reliability and maintainability can be deter- mined, as well as the mean time in operation and the mean time in failure. The main problem that occurs in forming the time picture of state is data monitoring and recording. In real conditions the ma- chines should be connected to information system which would precisely record each failure, duration and procedure of repair. This is usually expensive and improvised monitoring of the machine performance, namely of its shut downs, is imprecise. Moreover, statistical data processing provided by the time picture of the state requires that all machines work under equal conditions, which is difficult to achieve. As for the functionality of the technical system, there is no common way for its measuring and quantification. This is the reason why in this paper, in order to assess the effectiveness, expertise judgments of the employed in the working process of the analyzed machines will be used. Application of expertise judgments has been largely used in literature, primarily for data processing and the assessment of the technical systems in terms of: risk (Li Wang, Yang, Tanasijevic, Ivezic, Ignjatovic, Zadeh, 1996). Application of fuzzy sets today represents one of the most frequently used tools for solving the problems in various areas of optimization (Huang, Gu, Liebowitz, 1988) in general is also used for solving the optimizations problems from area of agro machinery. In article (Rohani, Abbaspour-Fard, and fuzzy composition of men- tioned indicators into one synthesized. Fuzzy proposition is pro- cedure for representing the statement that includes linguistic variables based on available information about considered techni- cal system. In that sense it is necessary to define the names of lin- guistic variables that represent different grades of effectiveness of considered technical system and define the fuzzy sets that describe the mentioned variables. Composition is a model that provides structure of indicators influences to the effectiveness performance. 2.1. Fuzzy model of problem solving The first step in the creation of fuzzy model for effectiveness (E) assessment is defining linguistic variables related to itself and to reliability (R), maintainability (M) and functionality (F). Regarding number of linguistic variables, it can be found that seven is the maximal number of rationally recognizable expressions that hu- man can simultaneously identify (Wang et al., 1995). However, for identification of considered characteristics even the smaller number of variables can be useful because flexibility of fuzzy sets to include transition phenomena as experts judgments commonly is (Ivezic et al., 2008). According to the above, five linguistic vari- ables for representing effectiveness performances are included: poor, adequate, average, good and excellent. Form of these linguis- tic variables is given as appropriate triangular fuzzy sets (Klir .;l 5 R ; l M l 1 M ; .;l 5 M ; l F l 1 F ; .;l 5 F 1 In the next step, maxmin composition is performed on them. Max min composition, also called pessimistic, is often used in fuzzy alge- bra as a synthesis model (Ivezic et al., 2008; Tanasijevic et al., 2011; Wang et al., 1995; Wang 2000). The idea is to make overall assess- ment (E) equal to the partial virtual representative assessment. This assessment is identified as the best possible one between the worst partial grades expected (R, M or F). It can be concluded that all elements of (R, M and F) that make the E have equal influence on E, so that maxmin composition will be used, which in parallel way treats the partial ones onto the h time of planned shut down due to preventive maintenance. 1995) and OR R M F If we tions that is (according to Fig. 2): with 39 (2012) 89408946 Further, for each outcome its values are calculated (X c ). The outcome which would suit the combination c, it would be calcu- lated following the equations: X c P R;M;E j hi c 3 3 Finally, all of these outcomes are treated with maxmin composi- tion, as follows: (i) For each outcome search for the MINimum value of l R,M,F in vector E c (2). The minimum which would suit the combina- tion o, it would be calculated following the equations: MIN 0 minfl j1;.;5 R ;l j1;.;5 M .;l j1;.;5 F g;for all o 1toO 4 (ii) Outcomes are grouped according to their values X c (3), namely the size of j. (iii) Find the MAXimum between previously identified mini- mums (i) for each group (ii) of outcomes. The maximum which would suit value of j, would be calculated following the equations: MAX j maxfMIN o g; for every j 5 E assessment of technical system is obtained in the form: l E This expression (Fig. 2 tion of to fuzzy cedure (d) between the E which d i E j ;H take into account only values if l j1;.;5 R;M;F 0, we get combina- are named outcomes (o =1toO, where O # C). in the process of synthesis, are also used. Precisely, if we look at three partial indicators, namely their membership function (1), it is possible to make C = j 3 =5 3 combina- tions of their membership functions. Each of these combinations represents one possible synthesis effectiveness assessment (E). E l j1;.;5 ;l j1;.;5 ; .;l j1;2;.5 hi ; for all c 1toC 2 maxmin compositions which by using operators AND provide an advantage to certain elements over the others synthetic indicator. In literature (Ivezic et al., 2008; Wang et al., Fig. 2. Effectiveness fuzzy sets. 8942 R. Miodragovic et al./Expert Systems MAX j1 ; .;MAX j5 l 1 E ; .;l 5 E 6 (6) is necessary to map back to the E fuzzy sets ). Best-fit (Wang et al., 1995), method is used for transforma- E description (6) to form that defines grade of membership sets: poor, adequate, average, good and excellent. This pro- is recognized as identification. Best-fit method uses distance E obtained by maxmin composition (6) and each of expressions (according to Fig. 2), to represent the degree to E is confirmed to each of fuzzy sets of effectiveness (Fig. 2). i X 5 j1 l j E C0l j H j 2 v u u t ; j 1; .;5;H i fexcellent;goodaverage;adequate;poorg7 E i fb i1 ;poor;b i2 ;adequate;b i3 ;good; b i4 ;average;b i5 ;excellentg 10 3. An illustrative example As an illustrative example of evaluation of agriculture machin- ery effectiveness, the comparative analysis of three tractors A 1 B 2 , and C 2 is given in this article. In tractor A a 7.146 l engine LO4V TCD 2013 is installed. Thanks to the reserves of torque from 35%, the tractor is able to meet all the requirements expected in the worst performing farming oper- ations in agriculture. Total tractor mass is 16,000 kg. According to OECD (CODE II) report maximum power measured at the PTO shaft is 243 kW at 2200 rpm with specific fuel consumption of 198 g/kW h (ECE-R24). Maximum engine torque is 1482 Nm at en- gine regime of 1450 rpm. Transmission gear is vario continious transmision. Linkage mechanism is a Category II/III with lifting force of 11,800 daN. In tractors B 2 and C 2 8.134 l engine 6081HRW37 JD is installed, with reserve torque of 40%, and this tractor was able to meet all the requirements expected in the worst performance of the farming operations in agriculture. Total tractor weight is 14,000 kg. Accord- ing to OECD (CODE II) report maximum power measured at the PTO shaft is 217 kW at 2002 rpm with specific fuel consumption of 193 g/kW h (ECE-R24). Maximum torque is 1320 Nm at engine revs of 1400 rpm. Transmission is AutoPower. Linkage mechanism is a Category II/III with lifting force of 10,790 daN. Both models have electronically controlled tractor engine and fuel supply system that meets the regulations on emissions. From the submitted technical characteristics of the tractor A, B and C it is seen that all three tractors are fully functional for l exc. = (0,0,0,0.25,1); l good = (0,0,0.25,1,0.25); l aver. = (0,0.25,1,0.25,0); l adeq. = (0.25,1,0.25,0,0); l poor = (1,0.25,0,0,0). The closer l E (6) is to the ith linguistic variable, the smaller d i is. Distance d i is equal to zero, if l E (6) is just the same as the ith expression in terms of the membership functions. In such a case, E should not be evaluated to other expressions at all, due to the exclusiveness of these expressions. Suppose d imin (i =1,.,5) is the smallest among the obtained distances for E j and leta 1 ,.,a 5 represent the reciprocals of the rel- ative distances (which is calculated as the ratio between corres- ponding distance d i (7) and the mentioned values d imin ). Then, a i can be defined as follows: a i 1 d i =d imin ; i 1; .;5 8 If d i = 0 it follows that a i = 1 and the others are equal to zero. Then, a i can be normalized by: b i a j P 5 m1 a im ; i 1; .;5 X 5 i1 b i 1 9 Each b i represents the extent to which E belongs to the ith defined E expressions. It can be noted that if E i completely belongs to the ith expression then b i is equal to 1 and the others are equal to 0. Thus b j could be viewed as a degree of confidence that E i belongs to the ith E expressions. Final expression for E performance at the level of tech- nical system, have been obtained in the form (10) where Applications 1 Tractor Fendt Vario 936. 2 Tractor John Deere 8520. performing difficult operations for different technologies of agri- cultural production. Tractors B and C have the same technical char- acteristics, and practice is the same type and model, except that the tractor B entered into operation in May 2007, a tractor C in June 2007. A tractor on the experimental farm, which is the technical documentation for the base model, comes into operation in July 2009. The main task of maintaining agricultural techniques is to provide functionality and reliability of machines. Maintenance of all three tractors is done by machine shop owned by the user up- grade option. Ten engineers (analysts) working on maintenance and opera- tion of tractors were interviewed. Their evaluation of R, D and F are given in Table 1. First, the effectiveness of tractor A is calculated. It can be seen that the reliability was assessed as excellent by six out of ten ana- lysts (6/10 = 0.6), as average by three (0.3) and as good by one (0.1). In this way the assessment R is obtained in the form (11): R 0:6=exc; 0:3=good; 0:1=aver; 0=adeq; 0=poor11 In the same way the assessments for M and F are obtained: M 0:4=exc; 0:4=good; 0:2=aver; 0=adeq; 0=poor F 0:5=exc; 0:5=good; 0=aver; 0=adeq; 0=poor In the next step, these assessments are mapped on fuzzy sets (Fig. 1) in order to obtain assessment in the form (1). For example, Reliabil- ity in this example is determined as (11), where it is to linguistic variable excellent joined weight 0.6. Thereby, fuzzy set excellent is defined as: R exc = (1/0, 2/0, 3/0, 4/0.25, 5/1.0) (according to Fig. 1). In this way the specific values of fuzzy set excellent R exc0.6 = (1/(0 C2 0.6), 2/(0 C2 0.6), 3/(0 C2 0.6), 4/(0.25 C2 0.6), 5/(1.0 C2 0.6) are obtained. The remaining four linguistic variables are treated in the same way. In the end for each j =1,.,5 specific membership functions (last row, Table 2) are added into the final fuzzy form (1) of tractor A reliability: l RA 0;0:025;0:175;0:475;0:675 In the same way, based on the questionnaire (Table 1) values for maintainability and functionality are obtained: l MA 0;0:05;0:3;0:55;0:5; l FA 0;0;0:125;0:625;0:62512 These fuzzificated assessments (11) and (12) are necessary to syn- thesize into assessment of effectiveness, using maxmin logics. In this case it is possible to make C =5 3 = 125 combinations, out of which the 48 outcomes. First outcome would be for combination 2-2-3: E 2-2-3 = 0.025,0.05,0.125, where is X 2-2-3 = (2 + 2 + 3)/3 = 2 (rounded as integer). Smallest value among the membership func- tions of this outcome is 0.025. Other outcomes and corresponding values of X c are shown in Table 3. All these outcomes can be grouped around sizes X = 2, 3, 4 and 5. For example, for outcome X = 5 it can be written: E 4C05C05 0:475;0:5;0:625C138;E 5C04C05 0:675;0:55;0:625C138;E 5C05C04 0:675;0:5;0:625C138;E 5C05C05 0:675;0:5;0:625C138 Further, for each of them, minimum between membership function is sought: Table 1 Results of questionnaire. Average x x xx x xx x R. Miodragovic et al./Expert Systems with Applications 39 (2012) 89408946 8943 Analyst Linguistic variables Tractor A Tractor B Excellent Good Average Adequate Poor Excellent Good 1R x x Mx x Fxxx 2R x Mx x Fx 3R x x Mx Fx 4R x x Mx Fx x 5R x x Mx Fxxx 6R x x Mx Fx x 7R x Mx Fx 8R x x Mx x Fx x 9R x x Mx x Fx x 10 R x x Mx x Fx x Tractor C Adequate Poor Excellent Good Average Adequate Poor x x x x x x x x x x x xx x x x x x x x x x with Table 2 Calculation of specific values of fuzzy sets. 12345 0.6/exc. 0 C2 0.6 0 C2 0.6 0 C2 0.6 0.25 C2 0.6 1.0 C2 0.6 0.3/good 0 C2 0.3 0 C2 0.3 0.25 C2 0.3 1.0 C2 0.3 0.25 C2 0.3 8944 R. Miodragovic et al./Expert Systems MINE 4C05C05 minf0:475;0:5;0:625g0:475;MINE 5C04C05 0:55;MINE 5C05C04 0:5;MINE 5C05C05 0:5 Between these minimums, in the end it seeks maximum: MAXX d5 maxf0:475;0:55;0:5;0:5g0:55 Also for other values: X: MAX X =2 = 0.025; MAX X =3 = 0.175; MAX X =4 = 0.55 (Table 1.) 0.1/aver. 0 C2 0.1 0.25 C2 0.1 1.0 C2 0.1 0.25 C2 0.1 0 C2 0.1 0/adeq. 0.25 C2 0 1.0 C2 0 0.25 C2 00C2 00C2 0 0/poor 1.0 C2 0 0.25 C2 00C2 C2 C2 0 P R 0 0.025 0.175 0.475 0.675 Table 3 Structure of MAXMIN composition. Comb. X l MIN 2345 2-2-3 2 0.025,0.05,0.125 0.025 2-2-4 3 0.025,0.05,0.625 0.025 2-2-5 3 0.025,0.05,0.625 0.025 2-3-3 3 0.025,0.3,0.125 0.025 2-3-4 3 0.025,0.3,0.625 0.025 2-3-5 3 0.025,0.3,0.625 0.025 2-4-3 3 0.025,0.55,0.125 0.025 2-4-4 3 0.025,0.55,0.625 0.025 2-4-5 4 0.025,0.55,0.625 0.025 2-5-3 3 0.025,0.5,0.125 0.025 2-5-4 4 0.025,0.5,0.625 0.025 2-5-5 4 0.025,0.5,0.625 0.025 3-2-3 3 0.175,0.05,0.125 0.05 3-2-4 3 0.175,0.05,0.625 0.05 3-2-5 3 0.175,0.05,0.625 0.05 3-3-3 3 0.175,0.3,0.125 0.125 3-3-4 3 0.175,0.3,0.625 0.175 3-3-5 4 0.175,0.3,0.625 0 0.175 3-4-3 3 0.175,0.55,0.125 0.125 3-4-4 4 0.175,0.55,0.625 0.175 3-4-5 4 0.175,0.55,0.625 0.175 3-5-3 4 0.175,0.5,0.125 0.125 3-5-4 4 0.175,0.5,0.625 0.175 3-5-5 4 0.175,0.5,0.625 0.175 4-2-3 3 0.475,0.05,0.125 0.05 4-2-4 3 0.475,0.05,0.625 0.05 4-2-5 4 0.475,0.05,0.625 0.05 4-3-3 3 0.475,0.3,0.125 0.125 4-3-4 4 0.475,0.3,0.625 0.3 4-3-5 4 0.475,0.3,0.625 0.3 4-4-3 4 0.475,0.55,0.125 0.125 4-4-4 4 0.475,0.55,0.625 0.475 4-4-5 4 0.475,0.55,0.625 0.475 4-5-3 4 0.475,0.5,0.125 0.125 4-5-4 4 0.475,0.5,0.625 0.475 4-5-5 5 0.475,0.5,0.625 0.475 5-2-3 3 0.675,0.05,0.125 0.05 5-2-4 4 0.675,0.05,0.625 0.05 5-2-5 4 0.675,0.05,0.625 0.05 5-3-3 4 0.675,0.3,0.125 0.125 5-3-4 4 0.675,0.3,0.625 0.3 5-3-5 4 0.675,0.3,0.625 0.3 5-4-3 4 0.675,0.55,0.125 0.125 5-4-4 4 0.675,0.55,0.625 0.55 5-4-5 5 0.675,0.55,0.625 0.55 5-5-3 4 0.675,0.5,0.125 0.125 5-5-4 5 0.675,0.5,0.625 0.5 5-5-5 5 0.675,0.5,0.625 0.5 MAX 0.025 0.175 0.55 0.55 Finally, we get expression for membership function of effective- ness of tractor A: l EA 0;0:025;0:175;0:55;0:55 Best-fit method (79) and proposed E fuzzy set (Fig. 1) give the final effectiveness assessment for the tractor A: d 1 E;exc X 5 j1 l j E C0l j exc 2 v u u t 0C00 2 0:025C00 2 0:175C00 2 0:55C00:25 2 0:55C01 2 q 0:56899 where is : l E 0;0:025;0:175;0:55;0:55 l exc 0;0;0;0:25;1 For other fuzzy sets: d 2 (E, good) = 0.54658, d 3 (E, aver) = 1.06007, d 4 (E, adeq) = 1.27426, d 5 (E, poor) = 1.29856. for d min d 2 : a 1 1 d 1 =d 2 1 0:56899=0:54658 0:96061; a 2 1:00000;a 3 0:51561;a 4 0:42894;a 5 0:42091: b 1 a 1 P 5 i1 a i 0:96901 0:96901 1 0:51561 0:42894 0:42091 0:28881; b 2 0:30065;b 3 0:15502;b 4 0:12896;b 5 0:12655: Finally, we get the assessment of effectiveness of tractor A, in form (10): E A =(b 1 , excellent), (b 2 , good), (b 3 , average), (b 4 , ade- quate), (b 5 , poor) = (0.28881, excellent), (0.30065, good), (0.15502, average), (0.12896, adequate), (0.12655, poor) In the same way, we get the assessments for other two tractors B and C: E B = (0.23793, excellent), (0.27538, good), (0.20635, aver- age), (0.14693, adequate), (0.13342, poor) E C = (0.17507, excellent), (0.25092, good), (0.25468, aver- age), (0.17633, adequate), (0.14300, poor). Tractor A is in great extent of 0.30065 (in relation to 30 %) as- sessed as good, tractor B in great extent of 0.27538 (27.5%) as- Applications 39 (2012) 89408946 sessed as good, while tractor C is in great extent of 0.25468 (25.5%) assessed as average. It can be concluded that C is the worst, while tractor A is only somewhat better than B, especially if we see with that A is assessed as excellent in the extent of 28.8% while B in the extent of 23.8%. Effectiveness of analyzed tractors can be presented as in Fig. 3., where it can be more clearly seen that tractor A has the biggest effectiveness. If this assessment (E A , E B , E C ) is defuzzificated by center of mass point calculation Z (Bowles if calculated on 10,000 moto-hours, Fig. 3. Relationship of effectiveness of observed tractors. R. Miodragovic et al./Expert Systems it would spend in work 9244 moto-hours. As of the tractor B, out of 10,004 available moto-hours, it spent 9069 moto-hours in work, and tractor C out of 9981 available moto-hours spent 9045 in work. The experiment showed that the more reliable and efficient tractors are the less frequent are delays. In part, this initial advan- tage wiped out worse logistics of delivery of spare parts when it comes to tractor A. in 1100 moto-hours work of the tractor, due to poor logistics in maintaining hoped to eight working days, and it greatly influenced the decline in benefits of maintainability of a given tractor and thus the decline in total exploitation of the same efficiency (Internal technical documentation PKB). 4. Conclusion This paper presents a model for effectiveness assessment of technical systems, precisely agricultural machinery, based on fuzzy sets theory. Effectiveness performance has been adopted as overall indicator of systems quality of service, i.e. as entire measure of technical system availability. Reliability, maintainability and func- tionality performances have been recognized as effectiveness parameters or indicators. Linguistic form can be appointed as the References Bowles, J. B., & Pelaez, C. E. (1995). Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliability Engineering and System Safety, 50(2), 203213. Cai, K. Y. (1996).
收藏