四輪汽車的轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)
四輪汽車的轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì),四輪汽車的轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì),汽車,轉(zhuǎn)向,機(jī)構(gòu),設(shè)計(jì)
北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文)
四輪汽車的轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)
摘要:本文剛開始介紹了汽車的發(fā)展歷史,以及它發(fā)展的現(xiàn)狀,然后指出本文有要研究的內(nèi)容是汽車的轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)。首先要確定轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)的方案,同時(shí)通過不同的轉(zhuǎn)向機(jī)構(gòu)組成部分的組合,設(shè)計(jì)出一種新的汽車轉(zhuǎn)向機(jī)構(gòu)。在轉(zhuǎn)向機(jī)構(gòu)中采用循環(huán)球式轉(zhuǎn)向器使滑動(dòng)摩擦轉(zhuǎn)變?yōu)闈L動(dòng)摩擦,從而具有較高的傳動(dòng)效率,同時(shí)使用壽命還大大增強(qiáng),但它也有制造困難,機(jī)構(gòu)復(fù)雜等缺點(diǎn)。
本文重點(diǎn)設(shè)計(jì)了循環(huán)球式轉(zhuǎn)向器,并對(duì)轉(zhuǎn)向器零件強(qiáng)度、剛度進(jìn)行了校核,同時(shí)還對(duì)轉(zhuǎn)向系計(jì)算載荷進(jìn)行確定,同樣也對(duì)所設(shè)計(jì)的轉(zhuǎn)向機(jī)構(gòu)進(jìn)行了分析和研究,同時(shí)還提出了轉(zhuǎn)向系容易出的一般故障及解決方法。
關(guān)鍵詞: 轉(zhuǎn)向系;轉(zhuǎn)向機(jī)構(gòu);循環(huán)球式轉(zhuǎn)向器
The design of automobile steering system
Abstract:This paper firstly introduced the development of automobile,then automobile steering system was pointed out the content of this paper.In order to design the automobile steering machine,so many datas should be lookupped.The new automobile steering machine designed in this paper is a combination of all kinds of parts. Because of used the cycle-ball steering gear,the automobile steering machine has very high of efficiency,although it is not easy to manufacture and very precious.
The focus of this paper is the design of the cycle-ball steering gear as well as steering gear parts strength and Stiffness calculated cooperation with the standard.Of course the analyse of the automobile steering machine is also introduced in this paper as well as some troubles of automobile steering machine, and the methods to solve these troubles.
Keywords: automobile steering machine;cycle-ball steering gear
前言
從第一輛汽車發(fā)明到現(xiàn)在以來,它已經(jīng)走過了風(fēng)風(fēng)雨雨的一百多年。從卡爾.本茨造出的第一輛三輪汽車開始每小時(shí)18公里的速度到現(xiàn)在從零加速到一百只要三秒多鐘,由此可見汽車的發(fā)展是巨大的。通用、福特、豐田和本田等這些著名的公司現(xiàn)在已經(jīng)成為大家耳熟能詳?shù)拿帧H缃衿嚨陌l(fā)展更是日新月異,一個(gè)多世紀(jì)以來,世界汽車業(yè)已如同一棵樹木一樣從幼苗長(zhǎng)成了參天大樹。汽車的各項(xiàng)技術(shù)也像樹木一樣已從樹干發(fā)展到枝葉。在安全性方面,自1902年美國(guó)貝克工程師在紐約汽車競(jìng)賽中最早使用汽車安全帶到現(xiàn)在,汽車的主動(dòng)安全裝置包括自動(dòng)防抱死裝置ABS、電子眼、全球定位系統(tǒng)GPS等,被動(dòng)安全裝置包括安全帶、安全氣囊、安全氣簾等。在發(fā)動(dòng)機(jī)方面,從最初的單缸到多缸,從化油器到燃油電子噴射、從往復(fù)式到轉(zhuǎn)子式。隨著科技的進(jìn)步,各種新的技術(shù)還會(huì)源源不斷地應(yīng)用到汽車上,包括最新發(fā)展的油-電混合動(dòng)力技術(shù)和燃料電池技術(shù)。進(jìn)入21世紀(jì)后,轎車主體發(fā)展趨勢(shì)將是系列化、輕量化、小型化、電子化、柴油化。
現(xiàn)在由于環(huán)境的因素,對(duì)汽車的環(huán)保要求也越來越高,為此近年來汽車業(yè)界一直在致力于開發(fā)油-電混合動(dòng)力車和氫燃料電池車。其中較為領(lǐng)先的有日本豐田和本田、美國(guó)通用及戴-克集團(tuán)等。氫燃料電池被稱為“零污染”電池,由氫和氧發(fā)生反應(yīng)產(chǎn)生能量,副產(chǎn)品只有水。目前,氫的來源一般是天然氣和沼氣。此外,可以通過電解水將氫和氧分離而提取氫。而電能則可以通過煤燃燒或核反應(yīng)堆來產(chǎn)生。
汽車通常是由發(fā)動(dòng)機(jī)、車身、電氣設(shè)備、底盤等四部分組成。發(fā)動(dòng)機(jī)是使供入其中的燃料燃燒而發(fā)出動(dòng)力,也就是為汽車提供動(dòng)力。車身是駕駛員工作地場(chǎng)所,也是裝載乘客和貨物地場(chǎng)所。車身應(yīng)為駕駛員提供方便地操作條件,以及為乘客提供舒適安全地環(huán)境或保證貨物完好無損。電氣設(shè)備由電源組、發(fā)動(dòng)機(jī)起動(dòng)系和點(diǎn)火系、汽車照明和信號(hào)裝置組成。此外,在現(xiàn)代汽車上愈來愈多地裝用了各種電子設(shè)備:微處理機(jī)、中央計(jì)算機(jī)系統(tǒng)及各種人工智能裝置等,顯著提高了汽車的性能。底盤它包括傳動(dòng)系,行駛系,轉(zhuǎn)向系,制動(dòng)裝置。
轉(zhuǎn)向系作為汽車底盤的組成部分之一,由此可以看出那它的作用是顯而易見的,在本文的以下內(nèi)容中將重點(diǎn)介紹汽車轉(zhuǎn)向系的組成,設(shè)計(jì)以及它的分析。圖1為汽車的一個(gè)基本轉(zhuǎn)向機(jī)構(gòu)。
圖1 汽車轉(zhuǎn)向機(jī)構(gòu)
4
外文文獻(xiàn)綜述
汽車的轉(zhuǎn)向系統(tǒng)由轉(zhuǎn)向器和傳動(dòng)機(jī)構(gòu)組成。轉(zhuǎn)向器包括:轉(zhuǎn)向盤、轉(zhuǎn)向軸、轉(zhuǎn)向蝸桿、轉(zhuǎn)向搖臂軸等。轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)包括:轉(zhuǎn)向搖臂、轉(zhuǎn)向縱拉桿、轉(zhuǎn)向節(jié)臂、左右轉(zhuǎn)向梯形臂和轉(zhuǎn)向橫拉桿等機(jī)件。它的作用是保證汽車在行駛中能適應(yīng)道路情況改變行駛方向,或保持穩(wěn)定的直線行駛。
這五篇文章通過一些例子講述了以下幾個(gè)內(nèi)容:
一、 設(shè)計(jì)轉(zhuǎn)向機(jī)構(gòu)時(shí)應(yīng)該注意的問題[1]
這些問題包括運(yùn)動(dòng)零件之間的干涉以及它們和車輛本身之間的干涉,還有要保證輪胎之間的最小滑動(dòng)和保證車軸和操縱器之間的最小振蕩等等,同時(shí)給出了如何解決這些的問題的方法以及和一些優(yōu)化設(shè)計(jì):通過改變壓力角以及運(yùn)用一些公式可以計(jì)算出最假的組合方式。
二、一個(gè)轉(zhuǎn)向系統(tǒng)的研究[3]
在這篇文章中主要講述的是設(shè)計(jì)了一個(gè)新的轉(zhuǎn)向系統(tǒng),用它來研究它在實(shí)際中的運(yùn)用,同時(shí)用它來和其他的轉(zhuǎn)向系統(tǒng)比較牽引功能以及確定在什么情況下這種系統(tǒng)會(huì)工作的更好。在這項(xiàng)研究中,通過計(jì)算機(jī)和實(shí)驗(yàn)車輛連接來建立轉(zhuǎn)向系統(tǒng)的獨(dú)立坐標(biāo)。
三、 自動(dòng)轉(zhuǎn)向系統(tǒng)的失效分析[2]
這篇文章用越野車(SUV)作為例子講述了中心連桿的兩個(gè)部分的失效:螺紋連接部分和抱合部分,失效主要發(fā)生在連接桿部分。同時(shí)作為研究的越野車已經(jīng)使用了兩年并且行程小于30000公里。以及通過視覺檢查,圖像文件,機(jī)構(gòu)分析,硬件檢查,金相檢測(cè)來確定這些失效的原因并確定處理方法。
四、 自動(dòng)轉(zhuǎn)向系統(tǒng)[5]
主要是講述的在一個(gè)農(nóng)用車輛的前面裝了一個(gè)攝象裝置,同過它可以采集圖象再經(jīng)過處理從而實(shí)現(xiàn)植物0.25到0.5之間自動(dòng)轉(zhuǎn)向功能,這樣它可以在除草過程中避開莊稼,實(shí)現(xiàn)自動(dòng)化。
五、 轉(zhuǎn)向系統(tǒng)的旋轉(zhuǎn)振蕩頻率[4]
通過在車輛內(nèi)安裝實(shí)驗(yàn)假人來研究轉(zhuǎn)向系統(tǒng)的旋轉(zhuǎn)振蕩頻率對(duì)駕駛員的影響。在這項(xiàng)研究中運(yùn)用了好多的傳感器來測(cè)量數(shù)據(jù),最后進(jìn)行一系列的數(shù)據(jù)處理。而所選的頻率是3到300多赫茲。
除了以上講述的內(nèi)容以外,轉(zhuǎn)向系統(tǒng)和轉(zhuǎn)向機(jī)構(gòu)還包括很多方面的內(nèi)容,以及轉(zhuǎn)向的其他設(shè)計(jì)也有很多,同時(shí)轉(zhuǎn)向機(jī)構(gòu)對(duì)汽車的轉(zhuǎn)向性能,駕駛舒適性,輪胎壽命等方面都有影響。在現(xiàn)代汽車中一般都采用雙橫臂式懸架和轉(zhuǎn)向機(jī)構(gòu)組成的空間桿機(jī)構(gòu),所以當(dāng)轉(zhuǎn)向梯形斷開點(diǎn)位置選擇不當(dāng)時(shí),會(huì)造成橫拉桿與懸架轉(zhuǎn)向機(jī)構(gòu)運(yùn)動(dòng)不協(xié)調(diào),汽車行駛時(shí)出現(xiàn)前輪擺振現(xiàn)象,加劇輪胎磨損,破壞操縱穩(wěn)定性。
因此轉(zhuǎn)向機(jī)構(gòu)對(duì)汽車非常重要,同時(shí)在現(xiàn)代汽車中增加了助力裝置使汽車的轉(zhuǎn)向更加的省力和輕松。
參考文獻(xiàn):
[1]. P.A.Simionescu,Ilie Talpasanu. Synthesis and analysis of the steering system of an adjustable tread-width four-wheel tractor[J] ScienceDirect,2007,526-540
[2]. A.H.Falah,M.A.Alfares,A.H.Elkholy. Failure investigation of a tie rod end of an automobile steering system[J] ScienceDirect,2007,895-902
[3]. B.C.Besselink. Development of a vehicle to study the tractive performance of integrate steering-drive systems[J] ScienceDirect,2004,187-198
[4]. J.Giacomin,M.S.Shayaa,E.Dormegnie,L.Richard. Frequence weighting for the evaluation of steering wheel rotation vibration[J] ScienceDirect,2004,527-541
[5]. Thomas Bak ;Hans Jakobsen. Agricultural Robotic Platform with Four Wheel Steering for Weed Detection[J] ScienceDirect,2004,125-136
誠(chéng)信申明
本人申明:
我所呈交的本科畢業(yè)設(shè)計(jì)論文是本人在導(dǎo)師的指導(dǎo)下進(jìn)行的研究工作及取得的研究成果。盡我所知,除了文中特別加以標(biāo)注和致謝中所羅列的內(nèi)容以外,論文中不包含其他人以及發(fā)表或撰寫過的研究成果。與我一同工作的同志對(duì)本研究所做的任何貢獻(xiàn)均已在論文中作了明確的說明并表示了謝意。本人完全意識(shí)到本申明的法律結(jié)果由本人承擔(dān)。
申請(qǐng)學(xué)位論文與資料若有不實(shí)之處,本人承擔(dān)一切相關(guān)責(zé)任。
本人簽名: 2007年6月5日
北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 1 目錄 第 1 章 緒論 .(1) 第 2 章 轉(zhuǎn)向系的的參數(shù)設(shè)計(jì) .(4) 第 2.1 節(jié) 轉(zhuǎn)向器的效率 .(4) 第 2.2 節(jié) 轉(zhuǎn)向系傳動(dòng)比及其變化特性 .(6) 第 2.3 節(jié) 轉(zhuǎn)向系計(jì)算載荷的確定 .(7) 第 3 章 循環(huán)球式轉(zhuǎn)向器的設(shè)計(jì) .(8) 第 31 節(jié) 主要尺寸參數(shù)的選擇 .(8) 第 3.2 節(jié) 循環(huán)球式轉(zhuǎn)向器零件強(qiáng)度計(jì)算 .(11) 第 4 章 車輛轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)和分析 .(15) 第 41 節(jié) 車輛轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì) .(15) 第 4.2 車輛轉(zhuǎn)向機(jī)構(gòu)分析 .(18) 第 5 章 汽車轉(zhuǎn)向系統(tǒng)各部分結(jié)構(gòu)和作用 .(22) 第 51 節(jié) 懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)以及作用 .(22) 第 52 節(jié) 助力轉(zhuǎn)向器 .(25) 第 6 章 汽車轉(zhuǎn)向系統(tǒng)常見故障分析及處理方法 .(28) 第 7 章 結(jié)論 .(30) 參考文獻(xiàn) .(31) 致謝 .(32) 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 2 第 1 章 緒論 轉(zhuǎn)向系是用來保持或者改變汽車行駛方向的機(jī)構(gòu),在汽車轉(zhuǎn)向行駛時(shí),保證各轉(zhuǎn) 向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。 轉(zhuǎn)向系一般由轉(zhuǎn)向操縱機(jī)構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向機(jī)構(gòu)三部分組成。操縱機(jī)構(gòu)就是所謂 的方向盤,當(dāng)轉(zhuǎn)動(dòng)方向盤時(shí),轉(zhuǎn)向軸和蝸桿隨著轉(zhuǎn)動(dòng),滾動(dòng)與蝸桿嚙合上下移動(dòng),使 轉(zhuǎn)向搖臂擺動(dòng),推動(dòng)直拉桿前后移動(dòng)。于是轉(zhuǎn)動(dòng)節(jié)以轉(zhuǎn)向主銷為中心,帶動(dòng)一側(cè)前輪 偏轉(zhuǎn),達(dá)到控制車輛轉(zhuǎn)向的目的。 轉(zhuǎn)向器又分為傳統(tǒng)純機(jī)械式和助力式。目前使用較多的是機(jī)械式轉(zhuǎn)向器,不過近 年來電動(dòng)、電控動(dòng)力轉(zhuǎn)向器已得到較快發(fā)展,不久的將來可以轉(zhuǎn)入商品裝車使用。電 控動(dòng)力轉(zhuǎn)向可以實(shí)現(xiàn)在各種行駛條件下轉(zhuǎn)動(dòng)轉(zhuǎn)向盤的力都輕便。 機(jī)械轉(zhuǎn)向系依靠駕駛員的手力轉(zhuǎn)動(dòng)轉(zhuǎn)向盤,經(jīng)轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)使轉(zhuǎn)向輪偏 轉(zhuǎn)。有些汽車還裝有防傷機(jī)構(gòu)和轉(zhuǎn)向減振器。采用動(dòng)力轉(zhuǎn)向的汽車還裝有動(dòng)力系統(tǒng), 并借助此系統(tǒng)來減輕駕駛員的手力。 對(duì)轉(zhuǎn)向系提出的要求有: (1)汽車轉(zhuǎn)彎行駛時(shí),全部車輪應(yīng)繞瞬時(shí)轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。 不滿足這項(xiàng)要求會(huì)加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。 (2)汽車轉(zhuǎn)向行駛后,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動(dòng)返回到直線 行駛位置,并穩(wěn)定行駛。 (3)汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪不得產(chǎn)生自振,轉(zhuǎn)向盤沒有擺動(dòng)。 (4)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)和懸架導(dǎo)向裝置共同工作時(shí),由于運(yùn)動(dòng)不協(xié)調(diào)使車輪產(chǎn)生的擺 動(dòng)應(yīng)最小。 (5)保證汽車有較高的機(jī)動(dòng)性,具有迅速和小轉(zhuǎn)彎行駛能力。 (6)操縱輕便。 (7)轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能小。 (8)轉(zhuǎn)向器和轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機(jī)構(gòu)。 (9)在車禍中,當(dāng)轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時(shí),轉(zhuǎn)向系應(yīng) 有能使駕駛員免遭或減輕傷害的防傷裝置。 (10)進(jìn)行運(yùn)動(dòng)校核,保證轉(zhuǎn)向盤與轉(zhuǎn)向輪轉(zhuǎn)動(dòng)方向一致。 正確設(shè)計(jì)轉(zhuǎn)向梯形機(jī)構(gòu),可以使第一項(xiàng)要求得到保證。轉(zhuǎn)向系中設(shè)置有轉(zhuǎn)向減振 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 3 器時(shí),能夠防止轉(zhuǎn)向輪產(chǎn)生自振,同時(shí)又能使傳到轉(zhuǎn)向盤上的反沖力明顯降低。為了 使汽車具有良好的機(jī)動(dòng)性能,必須使轉(zhuǎn)向輪有盡可能大的轉(zhuǎn)角,并要達(dá)到按前外輪車 輪軌跡計(jì)算,其最小轉(zhuǎn)彎半徑能達(dá)到汽車軸距的225倍。通常用轉(zhuǎn)向時(shí)駕駛員作 用在轉(zhuǎn)向盤上的切向力大小和轉(zhuǎn)向盤轉(zhuǎn)動(dòng)圈數(shù)多少兩項(xiàng)指標(biāo)來評(píng)價(jià)操縱輕便性。沒 有裝置動(dòng)力轉(zhuǎn)向的轎車,在行駛中轉(zhuǎn)向,此力應(yīng)為50100N;有動(dòng)力轉(zhuǎn)向時(shí),此力在 2050N。當(dāng)貨車從直線行駛狀態(tài),以10kmH速度在柏油或水泥的水平路段上轉(zhuǎn)入 沿半徑為12m的圓周行駛,且路面干燥,若轉(zhuǎn)向系內(nèi)沒有裝動(dòng)力轉(zhuǎn)向器,上述切向力 不得超過250N;有動(dòng)力轉(zhuǎn)向器時(shí),不得超過120N。轎車轉(zhuǎn)向盤從中間位置轉(zhuǎn)到每一端 的圈數(shù)不得超過20圈,貨車則要求不超過30圈 1。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 4 第 2 章 轉(zhuǎn)向系的的參數(shù)設(shè)計(jì) 第 2.1 節(jié) 轉(zhuǎn)向器的效率 功率P 1從轉(zhuǎn)向軸輸入,經(jīng)轉(zhuǎn)向搖臂軸輸出所求得的效率稱為正效率,用符號(hào) +表示, +=(P1-P2)P l;反之稱為逆效率,用符號(hào) -表示, - =(P3-P2)P 3,式 中,P 2為轉(zhuǎn)向器中的摩擦功率;P 3為作用在轉(zhuǎn)向搖臂軸上的功率。為了保證轉(zhuǎn)向時(shí)駕 駛員轉(zhuǎn)動(dòng)轉(zhuǎn)向盤輕便,要求正效率高。為了保證汽車轉(zhuǎn)向后轉(zhuǎn)向輪和轉(zhuǎn)向盤能自動(dòng)返 回到直線行駛位置,又需要有一定的逆效率。為了減輕在不平路面上行駛時(shí)駕駛員的 疲勞,車輪與路面之間的作用力傳至轉(zhuǎn)向盤上要盡可能小,防止打手又要求此逆效率 盡可能低。 (1)理論計(jì)算 轉(zhuǎn)向器的正效率 + 1 影響轉(zhuǎn)向器正效率的因素有:轉(zhuǎn)向器的類型、結(jié)構(gòu)特點(diǎn)、結(jié)構(gòu)參數(shù)和制造質(zhì)量 等。 轉(zhuǎn)向器類型、結(jié)構(gòu)特點(diǎn)與效率。 在前述四種轉(zhuǎn)向器中,齒輪齒條式、循環(huán)球式轉(zhuǎn)向器的正效率比較高,而蝸桿指 銷式特別是固定銷和蝸桿滾輪式轉(zhuǎn)向器的正效率要明顯的低些。 同一類型轉(zhuǎn)向器,因結(jié)構(gòu)不同效率也不一樣。如蝸桿滾輪式轉(zhuǎn)向器的滾輪與支持 軸之間的軸承可以選用滾針軸承、圓錐滾子軸承和球軸承等三種結(jié)構(gòu)之一。第一種結(jié) 構(gòu)除滾輪與滾針之間有摩擦損失外,滾輪側(cè)翼與墊片之間還存在滑動(dòng)摩擦損失,故這 種轉(zhuǎn)向器的效率僅有54。另外兩種結(jié)構(gòu)的轉(zhuǎn)向器效率,根據(jù)試驗(yàn)結(jié)果分別為70和 75。 轉(zhuǎn)向搖臂軸軸承的形式對(duì)效率也有影響,用滾針軸承比用滑動(dòng)軸承可使正或逆效 率提高約10。 轉(zhuǎn)向器的結(jié)構(gòu)參數(shù)與效率 如果忽略軸承和其它地方的摩擦損失,只考慮嚙合副的摩擦損失,對(duì)于蝸桿和螺 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 5 桿類轉(zhuǎn)向器,其效率可用下式計(jì)算 (2.1))tan(0 式(2.1)中, 為蝸桿的螺線導(dǎo)程角, 為摩擦角, =arctanf,f為摩擦因數(shù)。 轉(zhuǎn)向器逆效率 - 2 根據(jù)逆效率大小不同,轉(zhuǎn)向器又有可逆式、極限可逆式和不可逆式之分。 路面作用在車輪上的力,經(jīng)過轉(zhuǎn)向系可大部分傳遞到轉(zhuǎn)向盤,這種逆效率較高的 轉(zhuǎn)向器屬于可逆式。它能保證轉(zhuǎn)向后,轉(zhuǎn)向輪和轉(zhuǎn)向盤自動(dòng)回正。這既減輕了駕駛員 的疲勞,又提高了行駛安全性。但是,在不平路面上行駛時(shí),車輪受到的沖擊力,能 大部分傳至轉(zhuǎn)向盤,造成駕駛員“打手”,使之精神狀態(tài)緊張,如果長(zhǎng)時(shí)間在不平路 面上行駛,易使駕駛員疲勞,影響安全駕駛。屬于可逆式的轉(zhuǎn)向器有齒輪齒條式和循 環(huán)球式轉(zhuǎn)向器。 不可逆式轉(zhuǎn)向器,是指車輪受到的沖擊力不能傳到轉(zhuǎn)向盤的轉(zhuǎn)向器。該沖擊力由 轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的零件承受,因而這些零件容易損壞。同時(shí),它既不能保證車輪自動(dòng)回 正,駕駛員又缺乏路面感覺;因此,現(xiàn)代汽車不采用這種轉(zhuǎn)向器。 極限可逆式轉(zhuǎn)向器介于上述兩者之間。在車輪受到?jīng)_擊力作用時(shí),此力只有較小 一部分傳至轉(zhuǎn)向盤。它的逆效率較低,在不平路面上行駛時(shí),駕駛員并不十分緊張, 同時(shí)轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)的零件所承受的沖擊力也比不可逆式轉(zhuǎn)向器要小。 如果忽略軸承和其它地方的摩擦損失,只考慮嚙合副的摩擦損失,則逆效率可用 式(2.2)計(jì)算: (2.2)0tan( ) 式(2.1)和式(2.2)表明:增加導(dǎo)程角 ,正、逆效率均增大。受 -增大的影響,0 不宜取得過大。當(dāng)導(dǎo)程角小于或等于摩擦角時(shí),逆效率為負(fù)值或者為零,此時(shí)表0 明該轉(zhuǎn)向器是不可逆式轉(zhuǎn)向器。為此,導(dǎo)程角必須大于摩擦角。通常螺線導(dǎo)程角選在 810之間。 (2)本文設(shè)計(jì)計(jì)算 由于本文采用循環(huán)球式轉(zhuǎn)向器,設(shè)計(jì)計(jì)算如下: 1 摩擦系數(shù) 可取值為 0.042,蝸桿的螺線導(dǎo)程角 取值為 10f 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 6 所以摩擦角 arctn2.4f 也就是轉(zhuǎn)向器的正效率 tantan108%()(2.4) 轉(zhuǎn)向器的逆效率 tt.76aa 第 2.2 節(jié) 轉(zhuǎn)向系傳動(dòng)比及其變化特性 轉(zhuǎn)向系的傳動(dòng)比包括轉(zhuǎn)向系的角傳動(dòng)比 和轉(zhuǎn)向系的力傳動(dòng)比woi pi (1)此輕型卡車的轉(zhuǎn)向盤轉(zhuǎn)動(dòng)的總?cè)?shù)定為 6 圈 (2)轉(zhuǎn)向器的角傳動(dòng)比 取值為 25i (3)轉(zhuǎn)向盤直徑 為 400SWDm (4)車輪轉(zhuǎn)臂 =50a (5)轉(zhuǎn)向節(jié)臂臂長(zhǎng) 與搖臂長(zhǎng) 之比 = 值大約在 0.851.1 之間,所以可取2l1li21l 為 1。i 所以轉(zhuǎn)向系的角傳動(dòng)比 2015lii 所以轉(zhuǎn)向系的力傳動(dòng)比 040SWpwDia 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 7 第 2.3 節(jié) 轉(zhuǎn)向系計(jì)算載荷的確定 2.3.1 轉(zhuǎn)向阻力矩 ( ) ,即 RMNm 31RGfP 其中, 為輪胎和路面的滑動(dòng)摩擦因數(shù),取 0.7;f 為轉(zhuǎn)向軸負(fù)荷,本車為 14216N;1G P 為輪胎氣壓,取 0.8 ;aMP 所以, = ( ) 31RfM30.7421679.8Nm 2.3.2 作用在方向盤上的手力為 12RhSWLFDi 轉(zhuǎn)向節(jié)臂臂長(zhǎng) 與搖臂長(zhǎng) 之比 = 值大約在 0.851.1 之間,所以可取 為2l1li1l i 1; 轉(zhuǎn)向盤直徑 為 400 ;SWDm 轉(zhuǎn)向器的角傳動(dòng)比 取值為 25;i 轉(zhuǎn)向器的正效率 =80%; 所以, = 12RhSWLMFDi2417905.8N 以上就是本文所設(shè)計(jì)的轉(zhuǎn)向系的參數(shù)設(shè)計(jì)。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 8 第 3 章 循環(huán)球式轉(zhuǎn)向器的設(shè)計(jì) 轉(zhuǎn)向器有很多種,包括齒輪齒條式,循環(huán)球式,助力轉(zhuǎn)向器,本問所設(shè)計(jì)的是 循環(huán)球式轉(zhuǎn)向器,它的傳動(dòng)效率比較高。 第 31 節(jié) 主要尺寸參數(shù)的選擇 3.1.1螺桿、鋼球、螺母?jìng)鲃?dòng)副 (1) 鋼球中心距D、螺桿外徑D,、螺母內(nèi)徑D 2 尺寸D、D l、D 2如圖3.1.1所示。鋼球中心距是基本尺寸,螺桿外徑D 1、螺母內(nèi)徑 D2及鋼球直徑d對(duì)確定鋼球中心距D的大小有影響,而D又對(duì)轉(zhuǎn)向器結(jié)構(gòu)尺寸和強(qiáng)度有 影響。在保證足夠的強(qiáng)度條件下,盡可能將D值取小些。選取D值的規(guī)律是隨著扇齒模 數(shù)的增大,鋼球中心距D也相應(yīng)增加。設(shè)計(jì)時(shí)先參考同類型汽車的參數(shù)進(jìn)行初選,經(jīng) 強(qiáng)度驗(yàn)算后,再進(jìn)行修正。螺桿外徑D l通常在2038mm范圍內(nèi)變化,設(shè)計(jì)時(shí)應(yīng)根據(jù)轉(zhuǎn) 向軸負(fù)荷的不同來選定。螺母內(nèi)徑D 2應(yīng)大于D l,一般要求D 2-Dl= (510)D. 圖3.1 螺母,鋼球傳動(dòng)副 (2) 鋼球直徑d及數(shù)量n 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 9 鋼球直徑尺寸d取得大,能提高承載能力,同時(shí)螺桿和螺母?jìng)鲃?dòng)機(jī)構(gòu)和轉(zhuǎn)向器的 尺寸也隨之增大。鋼球直徑應(yīng)符合國(guó)家標(biāo)準(zhǔn),一般常在79mm范圍內(nèi)選用。 增加鋼球數(shù)量n,能提高承載能力,但使鋼球流動(dòng)性變壞,從而使傳動(dòng)效率降低。 因?yàn)殇撉虮旧碛姓`差,所以共同參加工作的鋼球數(shù)量并不是全部鋼球數(shù)。經(jīng)驗(yàn)證明, 每個(gè)環(huán)路中的鋼球數(shù)以不超過60粒為好。為保證盡可能多的鋼球都承載,應(yīng)分組裝配。 每個(gè)環(huán)路中的鋼球數(shù)可用下式計(jì)算 (3.1)cos0DWndd 式(3.1)中,D為鋼球中心距;W為一個(gè)環(huán)路中的鋼球工作圈數(shù);n為不包括環(huán)流導(dǎo) 管中的鋼球數(shù); 0為螺線導(dǎo)程角,常取 0=58,則cos 01。 (3) 滾道截面 當(dāng)螺桿和螺母各由兩條圓弧組成,形成四段圓弧滾道截面時(shí),見圖720,鋼球 與滾道有四點(diǎn)接觸,傳動(dòng)時(shí)軸向間隙最小,可滿足轉(zhuǎn)向盤自由行程小的要求。圖中滾 道與鋼球之間的間隙,除用來貯存潤(rùn)滑油之外,還能貯存磨損雜質(zhì)。為了減少摩擦, 螺桿和螺母溝槽的半徑R 2應(yīng)大于鋼球半徑d/2,一般取R 2 =(051053)d。 圖3.2四段圓弧滾道截面 (4) 接觸角 鋼球與螺桿滾道接觸點(diǎn)的正壓力方向與螺桿滾道法面軸線間的夾角稱為接觸角 ,如圖720所示。角多取為45,以使軸向力和徑向力分配均勻。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 10 (5) 螺距P和螺旋線導(dǎo)程角 0 轉(zhuǎn)向盤轉(zhuǎn)動(dòng)角,對(duì)應(yīng)螺母移動(dòng)的距離S為 2PS (3.2) 式(3.2)中,P為螺紋螺距。 與此同時(shí),齒扇節(jié)圓轉(zhuǎn)過的弧長(zhǎng)等于s,相應(yīng)搖臂軸轉(zhuǎn)過 角,其間關(guān)系可表示如 下 (3.3)sr 式(3.3)中,r為齒扇節(jié)圓半徑。 聯(lián)立式(3.2)、式(3.3)得 ,將對(duì) ,求導(dǎo)得循環(huán)球式轉(zhuǎn)向器角傳Pr2 動(dòng)比iw為 (3.4)w riP 由式(3.4)可知,螺距P影響轉(zhuǎn)向器角傳動(dòng)比的值。在螺距不變的條件下,鋼球直 徑d越大,圖719中的尺寸b越小,要求 。螺距 P一般在1218mm內(nèi)2.5bpdm 選取。 前已述及導(dǎo)程角 對(duì)轉(zhuǎn)向器傳動(dòng)效率有影響,此處不再贅述。0 (6) 工作鋼球圈數(shù)W 多數(shù)情況下,轉(zhuǎn)向器用兩個(gè)環(huán)路,而每個(gè)環(huán)路的工作鋼球圈數(shù)W又與接觸強(qiáng)度 有關(guān):增加工作鋼球圈數(shù),參加工作的鋼球增多,能降低接觸應(yīng)力,提高承載能力; 但鋼球受力不均勻、螺桿增長(zhǎng)而使剛度降低。工作鋼球圈數(shù)有15和25圈兩種。 (7)本文設(shè)計(jì)計(jì)算 根據(jù)此設(shè)計(jì)輕卡的基本參數(shù)查設(shè)計(jì)手冊(cè)計(jì)算分析得循環(huán)球式轉(zhuǎn)向器主要參數(shù)如表 3.1.1: 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 11 表 3.1.1 循環(huán)球式轉(zhuǎn)向器主要參數(shù)表 1.齒扇模數(shù)/ m4.0 2.搖臂直徑/ m30 3.剛球中心距/ 25 4.螺桿外徑/ 25 5.剛球直徑/ 6.350 6.螺母內(nèi)徑/ 27.5 7.螺距/ 9.525 8.工作圈數(shù)/ 1.5 9.環(huán)流行數(shù)/ 2 10.螺母長(zhǎng)度/ 46 11.齒扇齒數(shù)/ 5 11.齒扇整圓齒數(shù) / 13 12.齒扇壓力角/ 3013.切削交/ 630 14.齒扇寬/ m25 14每個(gè)環(huán)路中 鋼球數(shù) 19 第 3.2 節(jié) 循環(huán)球式轉(zhuǎn)向器零件強(qiáng)度計(jì)算 3.2.1 鋼球與滾道之間的接觸應(yīng)力 用下式計(jì)算鋼球與滾道之間的接觸應(yīng)力 32)(rREFk 也就是 (3.5) 321()bcNdr 式(3.5)中,k為系數(shù) ;2(1/)/ArR ;1B R2為滾道截面半徑; 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 12 r為鋼球半徑; Rl為螺桿外半徑; E為材料彈性模量,等于 ;622.10/Nm F3為鋼球與螺桿之間的正壓力,可用下式計(jì)算 (3.6)cos023nF 式(3.6)中, 為螺桿螺線導(dǎo)程角;0 為接觸角; n為參與工作的鋼球數(shù); F2為作用在螺桿上的軸向力,見圖3.1.3 (3.7)sincohwFRNl 當(dāng)接觸表面硬度為5864HRC時(shí),許用接觸應(yīng)力 =2500Nmm 2。 圖3.1.3 螺桿受力簡(jiǎn)圖 所以可以根據(jù)公式(3.5),(3.6) , (3.7)計(jì)算出剛球與滾道之間的接觸應(yīng)力 : 式(3.5)中,取 為剛球直徑 6.350 ;取 為螺桿外徑 25 ;crmbdm 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 13 k 為系數(shù),根據(jù) (2)5(23.06.5)/ 0.3cbdrAB 由1查表取 k 為 1.8; E 為材料彈性模量,等于 。52.10MPa 式(3.7)中, 為作用在轉(zhuǎn)向盤上的手力 111N;hF 為方向盤半徑 200 ;swRm 為螺旋線導(dǎo)程角取 ; 06 為剛球與滾道間的接觸角為 ;03 為參與工作的剛球數(shù) ;n 3.1425.19cos60DWnd 為剛球接觸點(diǎn)至螺桿中心線之距離為 10.90 。l m 所以, =1027(N)120sinco9.sin6co3hwFRNl 故 = 321()bckEdr 3521.807(.)()384.0.2aMP 強(qiáng)度校核 由于當(dāng)剛球與滾道的接觸表面的硬度為 HRC5864 時(shí),許用接觸應(yīng)力 可取j 為 。305MPa 取 =3500j 所以 ,故剛球與滾道之間的接觸應(yīng)力強(qiáng)度滿足要求。j 3.2.2 循環(huán)球式轉(zhuǎn)向器零件強(qiáng)度校核 齒的彎曲應(yīng)力 W 用下式計(jì)算齒扇齒的彎曲應(yīng)力 (3.8)62Fhwbs 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 14 式(3.8)中,F(xiàn)為作用在齒扇上的圓周力 H為齒扇的齒高 b為齒扇的齒寬 s為基圓齒厚。 許用彎曲應(yīng)力為 =540Nmm 2.W 螺桿和螺母用20CrMnTi鋼制造,表面滲碳。前軸負(fù)荷不大的汽車,滲碳層深度在 0812mm;前軸負(fù)荷大的汽車,滲碳層深度在105145mm。表面硬度為58 63HRC。 此外,應(yīng)根據(jù)材料力學(xué)提供的公式,對(duì)接觸應(yīng)力進(jìn)行驗(yàn)算。 所以 許用彎曲應(yīng)力2612.35487wsFhMPaB540wMPa 齒的彎曲應(yīng)力滿足要求。 所以此循環(huán)球式轉(zhuǎn)向器零件強(qiáng)度滿足要求。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 15 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 16 第 4 章 車輛轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)和分析 第 41 節(jié) 車輛轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì) 車輛前輪轉(zhuǎn)向機(jī)構(gòu)為一個(gè)兩搖桿長(zhǎng)度相等的的雙搖桿機(jī)構(gòu),見圖 4.1 和圖 4.2,其中 代表車輛轉(zhuǎn)彎最小半徑,H 代表車輛軸距, L 代表車輛車距(兩支點(diǎn)間minR 的距離) ,L1,L3 代表?yè)u桿的長(zhǎng)度,L2 代表連桿長(zhǎng)度 、 代表車輛直線行駛時(shí)兩搖1 桿的轉(zhuǎn)角, 代表車輛車輛處于最小轉(zhuǎn)彎半徑時(shí),與兩搖桿固聯(lián)的兩前輪軸的擺、 角。當(dāng)車輛轉(zhuǎn)向時(shí),與兩搖桿固聯(lián)的兩前輪的擺角 不相等,兩前輪軸線的延長(zhǎng)、 線相交與 P 點(diǎn)。如 P 點(diǎn)的運(yùn)動(dòng)軌跡能落在兩后輪軸線的延長(zhǎng)線上,則整個(gè)車身可以看 作是繞 P 點(diǎn)轉(zhuǎn)動(dòng),4 個(gè)車輪都能在地面上做純滾動(dòng),這樣可以降低車胎因?yàn)楹偷孛婊?動(dòng)而造成的損傷。下面我們將探討如何設(shè)計(jì)該雙搖桿機(jī)構(gòu),使得車輛在轉(zhuǎn)向時(shí),兩前 輪軸線焦點(diǎn) P 的運(yùn)動(dòng)軌跡能落在兩后輪軸線的延長(zhǎng)線上,或者盡量接近兩后輪軸線的 延長(zhǎng)線。 圖 4.1 車輛前輪轉(zhuǎn)向機(jī)構(gòu) 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 17 圖 4.2 車輛前輪轉(zhuǎn)向機(jī)構(gòu)極限位置 4.1.1 本文車輛轉(zhuǎn)機(jī)構(gòu)設(shè)計(jì) 利用優(yōu)化設(shè)計(jì)的方法,在給定車輛技術(shù)參數(shù)(最小轉(zhuǎn)彎半徑 、軸距 H、輪minR 距 L)的變動(dòng)范圍內(nèi)連續(xù)取值。通過設(shè)計(jì)確定相應(yīng)搖桿 , 的長(zhǎng)度,優(yōu)化的目的是1L2 確定這樣一組參數(shù),使得兩前輪軸線的延長(zhǎng)線交點(diǎn) P 的運(yùn)動(dòng)軌跡與兩后輪軸線的延長(zhǎng) 線偏離最小,設(shè)計(jì)過程如下: 從分析便利考慮,將缺點(diǎn)搖桿 , 長(zhǎng)度轉(zhuǎn)為確定搖桿 L1 長(zhǎng)度和搖桿轉(zhuǎn)角 ,參看1L2 1 圖 4.1 有: (4.1)cos2 當(dāng)車輛處于最小轉(zhuǎn)彎半徑時(shí),與兩搖桿固聯(lián)的兩前輪軸的擺角 與車輛技術(shù)、 參數(shù)的關(guān)系: (4.2)minarcsi(/)HR (4.3)t2iL 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 18 當(dāng)車輛處于圖 4.1,圖 4.2 所示位置時(shí),搖桿轉(zhuǎn)角 的數(shù)學(xué)表達(dá)式:12、 、 、 (4.4) ()/2cos11Lar (4.5)08 (4.6)2 (4.7)1 確定 B2,C2 的坐標(biāo),見圖 4.2: (4.8)1 cos2inXLBY (4.9)si21C 按照四桿機(jī)構(gòu)要求 :,故有:BL 20 xyxccbb 即: (4.10)221xyxLCOScc 參看圖 4.2,依據(jù)連桿 與搖桿 的斜率相等,列出方程式:2BC2D 搖桿 的斜率 (4.11)2CD1ycKxL 連桿 的斜率 (4.12)2B2Bc 由于 12K 故有: (4.13)22cBCc yyxLx 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 19 式(4.10) , (4.13)是含有兩個(gè)未知量 和 的方程組,故當(dāng)給定最小轉(zhuǎn)彎半徑1L Rmin、軸距 H、輪距 L 時(shí),將它們分別代入(4.2 ) (4.9) ,并連列求解方程組 (4.10)和(4.13) ,即可求出相應(yīng)的搖桿長(zhǎng)度 L1 和 L2 長(zhǎng)度。 本文計(jì)算 在這篇文章,取最小轉(zhuǎn)彎半徑 Rmin=3200mm,軸距 H=1500mm,輪距 L=1800mm,將 他們分別代入(4.2) (4.9)式,并聯(lián)立求解方程組(4.10)和(4.13)可得 和 1L ,但要考慮實(shí)際情況,所以在這里我們先確定 的長(zhǎng)度令 =300mm,所以利用以上2L 1L1 公式可以求出搖桿轉(zhuǎn)角 =69.84L2=843.25mm, = 27.95, =40.17.1 第 4.2 車輛轉(zhuǎn)向機(jī)構(gòu)分析 給出一組車輛技術(shù)參數(shù):最小轉(zhuǎn)彎半徑 、軸距、輪距、搖桿 ,即可得到minR1L 一個(gè)轉(zhuǎn)向機(jī)構(gòu)。運(yùn)行該機(jī)構(gòu)就可以得到兩前輪軸線交點(diǎn) P 的運(yùn)動(dòng)軌跡,并可以觀察 P 點(diǎn)的運(yùn)動(dòng)軌跡和兩后輪軸線的延長(zhǎng)線接近的程度,從而比較轉(zhuǎn)向機(jī)構(gòu)轉(zhuǎn)動(dòng)性能的優(yōu)劣。 下面我們定性的分析一組車輛技術(shù)參數(shù)對(duì)轉(zhuǎn)向性能的影響 2: (1)最小半徑 Rmin=3200mm,軸距 H=1500mm,輪距 L=1800mm,搖桿 的長(zhǎng)度依次取1L 200mm,300mm,400mm 時(shí)兩前輪軸線交點(diǎn) P 運(yùn)動(dòng)軌跡的變化(見表 4.1.1) 表 4.1 兩前輪軸線交點(diǎn) P 運(yùn)動(dòng)軌跡的變化表 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 20 分析表 4.1.1,比較軸距 H 和 Y 坐標(biāo)值,可以定性的認(rèn)為搖桿 取值越小,其 P 點(diǎn)的1L 運(yùn)動(dòng)軌跡越接近后兩輪軸線的延長(zhǎng)線。對(duì)于其它的情況,我們也可以分析一下: (2)最小半徑 =3200mm,軸距 H=1500mm,搖桿 =200mm,輪距 L 取minR1 850mm,1050mm,1250mm 時(shí),P 點(diǎn)的運(yùn)動(dòng)軌跡的變化見表 4.1.2: 通過分析表 4.1.2,比較軸距 H 和 Y 坐標(biāo)值,可以定性的認(rèn)為輪距 L 越小,其 P 點(diǎn) 的運(yùn)動(dòng)軌跡就會(huì)越接近后兩輪軸線的延長(zhǎng)線。 (3)軸距 H=1500mm,輪距 L=850mm,搖桿 =200mm,最小轉(zhuǎn)彎半徑依次取1L 2600mm,3200mm,2800mm 時(shí)兩前輪交點(diǎn) P 運(yùn)動(dòng)軌跡的變化見表 4.1.3。 通過對(duì)表 4.1.3 的分析,比較軸距 H 和 Y 坐標(biāo)值,可以定性的認(rèn)為最小轉(zhuǎn)彎半徑 取值越大,其 P 點(diǎn)的 運(yùn)動(dòng)軌跡就越接近后兩輪軸線的延長(zhǎng)線。 表 4.2 兩前輪軸線交點(diǎn) P 運(yùn)動(dòng)軌跡的變化表 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 21 表 4.3 兩前輪軸線交點(diǎn) P 運(yùn)動(dòng)軌跡的變化表 (4)最小轉(zhuǎn)彎半徑 =3800mm,輪距 L=850mm,搖桿 =200mm,軸距 H 依次取minR1L 1200mm,1500mm,1800mm 時(shí)兩前輪軸線交點(diǎn) P 的運(yùn)動(dòng)軌跡的變化見表 4.1.4: 通過對(duì)表 4.1.4 的分析,比較車輛軸距 H 與 Y 坐標(biāo)值,可以定性的認(rèn)為軸距 H 越小,其 P 點(diǎn)的運(yùn)動(dòng)軌跡就越接近兩后輪軸線的延長(zhǎng)線。 表 4.4 兩前輪軸線交點(diǎn) P 運(yùn)動(dòng)軌跡的變化表 結(jié)論 1 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 22 由此可以看出,車輛轉(zhuǎn)向機(jī)構(gòu)處于最小轉(zhuǎn)彎半徑位置時(shí),兩前輪軸線延長(zhǎng)線交點(diǎn) 的運(yùn)動(dòng)軌跡可以落在兩后輪軸線延長(zhǎng)線上,從而 4 個(gè)輪子都能在地面上做純滾動(dòng)。而 車輛前輪轉(zhuǎn)向機(jī)構(gòu)處于其他位置時(shí),兩前輪軸線延長(zhǎng)線交點(diǎn)的運(yùn)動(dòng)軌跡不能落在兩后 輪軸線延長(zhǎng)線上,但是可以通過合適的選擇車輛技術(shù)參數(shù),使得兩前輪延長(zhǎng)線交點(diǎn)的 運(yùn)動(dòng)軌跡落在兩后輪軸線延長(zhǎng)線上,那么 4 個(gè)輪子在地面上就可以做近似的純滾動(dòng)。 搖桿長(zhǎng)度不同,可以得到不同的雙搖桿機(jī)構(gòu)。通過觀察該機(jī)構(gòu)兩前輪軸線延長(zhǎng)線 交點(diǎn) P 的運(yùn)動(dòng)軌跡與兩后輪軸線延長(zhǎng)線接近程度來判斷轉(zhuǎn)向機(jī)構(gòu)運(yùn)動(dòng)性能的優(yōu)劣。 車輛前輪轉(zhuǎn)向機(jī)構(gòu)的運(yùn)動(dòng)轉(zhuǎn)動(dòng)性能,應(yīng)該盡可能的縮小搖桿長(zhǎng)度,縮小軸距及輪 距,加大最小轉(zhuǎn)彎半徑。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 23 第 5 章 汽車轉(zhuǎn)向系統(tǒng)各部分結(jié)構(gòu)和作用 第 51 節(jié) 懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)以及作用 5.1.1 非獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)以及作用 3 汽車轉(zhuǎn)向時(shí),要使各車輪都只滾動(dòng)不滑動(dòng),各車輪必須圍繞一個(gè)中心點(diǎn) O 轉(zhuǎn)動(dòng), 如圖 5.1.1 所示。顯然這個(gè)中心要落在后軸中心線的延長(zhǎng)線上,并且左、右前輪也必 須以這個(gè)中心點(diǎn) O 為圓心而轉(zhuǎn)動(dòng)。為了滿足上述要求,左、右前輪的偏轉(zhuǎn)角應(yīng)滿足如 下關(guān)系: 圖 5.1 車輛轉(zhuǎn)角關(guān)系圖 與非獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)主要包括轉(zhuǎn)向搖臂 2、轉(zhuǎn)向直拉桿 3 轉(zhuǎn)向節(jié)臂 4 和轉(zhuǎn)向梯形(如圖 5.1.2 所示) 。在前橋僅為轉(zhuǎn)向橋的情況下,由轉(zhuǎn)向橫拉桿 6 和 左、右梯形臂 5 組成的轉(zhuǎn)向梯形一般布置在前橋之后,如圖 5.2a 所示。當(dāng)轉(zhuǎn)向輪處 于與汽車直線行駛相應(yīng)的中立位置時(shí),梯形臂 5 與橫拉桿 6 在與道路平行的平面(水 平面)內(nèi)的交角90。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 24 在發(fā)動(dòng)機(jī)位置較低或轉(zhuǎn)向橋兼充驅(qū)動(dòng)橋的情況下,為避免運(yùn)動(dòng)干涉,往往將轉(zhuǎn)向 梯形布置在前橋之前,此時(shí)上述交角90,如圖 5.2b 所示。若轉(zhuǎn)向搖臂不是在汽車 縱向平面內(nèi)前后擺動(dòng),而是在與道路平行的平面向左右搖動(dòng),則可將轉(zhuǎn)向直拉桿 3 橫 置,并借球頭銷直接帶動(dòng)轉(zhuǎn)向橫拉桿 6,從而推使兩側(cè)梯形臂轉(zhuǎn)動(dòng)。 圖 5.2 轉(zhuǎn)向機(jī)構(gòu)示意圖 5.1.2 獨(dú)立懸架配用的轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)以及作用 當(dāng)轉(zhuǎn)向輪獨(dú)立懸掛時(shí),每個(gè)轉(zhuǎn)向輪都需要相對(duì)于車架作獨(dú)立運(yùn)動(dòng),因而轉(zhuǎn)向橋必 須是斷開式的。與此相應(yīng),轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)中的轉(zhuǎn)向梯形也必須是斷開式的,如圖 5.1.3 所示: 1.轉(zhuǎn)向搖臂 2.轉(zhuǎn)向直拉桿 3.左轉(zhuǎn)向橫拉桿 4.右轉(zhuǎn)向橫拉桿 5.左梯形臂 6.右梯形臂 7.搖桿 8.懸 架左擺臂 9.懸架右擺臂 10.齒輪齒條式轉(zhuǎn)向器 圖 5.3 轉(zhuǎn)向梯形示意圖 轉(zhuǎn)向直拉桿的作用是將轉(zhuǎn)向搖臂傳來的力和運(yùn)動(dòng)傳給轉(zhuǎn)向梯形臂(或轉(zhuǎn)向節(jié)臂)。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 25 它所受的力既有拉力、也有壓力,因此直拉桿都是采用優(yōu)質(zhì)特種鋼材制造的,以保證 工作可靠。直拉桿的典型結(jié)構(gòu)如圖 5.1.4 所示。在轉(zhuǎn)向輪偏轉(zhuǎn)或因懸架彈性變形而相 對(duì)于車架跳動(dòng)時(shí),轉(zhuǎn)向直拉桿與轉(zhuǎn)向搖臂及轉(zhuǎn)向節(jié)臂的相對(duì)運(yùn)動(dòng)都是空間運(yùn)動(dòng),為了 不發(fā)生運(yùn)動(dòng)干涉,上述三者間的連接都采用球銷。 1.螺母 2.球頭銷 3.橡膠防塵墊 4.螺塞 5.球頭座 6.壓縮彈簧 7.彈簧座 8.油嘴 9.直拉桿 體 10.轉(zhuǎn)向搖臂球頭銷 圖 5.4 直拉桿典型機(jī)構(gòu)圖 隨著車速的提高,現(xiàn)代汽車的轉(zhuǎn)向輪有時(shí)會(huì)產(chǎn)生擺振(轉(zhuǎn)向輪繞主銷軸線往復(fù) 擺動(dòng),甚至引起整車車身的振動(dòng)) ,這不僅影響汽車的穩(wěn)定性,而且還影響汽車的舒 適性、加劇前輪輪胎的磨損。在轉(zhuǎn)向傳動(dòng)機(jī)構(gòu)中設(shè)置轉(zhuǎn)向減振器是克服轉(zhuǎn)向輪擺振的 有效措施。轉(zhuǎn)向減振器的一端與車身(或前橋)鉸接,另一端與轉(zhuǎn)向直拉桿(或轉(zhuǎn)向 器)鉸接. 1.連接環(huán)襯套 2.連接環(huán)橡膠套 3.油缸 4.壓縮閥總成 5.活塞及活塞桿總成 6.導(dǎo)向座 7.油封 8. 擋圈 9.軸套及連接環(huán)總成10.橡膠儲(chǔ)液缸 圖 5.5 減震器圖 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 26 第 52 節(jié) 助力轉(zhuǎn)向器 目前為了減輕轉(zhuǎn)向時(shí)駕駛員作用到轉(zhuǎn)向盤上的手力和提高行駛安全性,在有些汽 車上裝設(shè)了動(dòng)力轉(zhuǎn)向機(jī)構(gòu)(雖然本人這次設(shè)計(jì)中沒有使用助力轉(zhuǎn)向器)。 中級(jí)以上轎車,由于對(duì)其操縱輕便性的要求越來越高,采用或者可供選裝動(dòng)力轉(zhuǎn) 向器的逐漸增多。轉(zhuǎn)向軸軸載質(zhì)量超過 的貨車可以采用動(dòng)力轉(zhuǎn)向,當(dāng)超過4t時(shí)應(yīng)2.5t 該采用動(dòng)力轉(zhuǎn)向。 動(dòng)力轉(zhuǎn)向系統(tǒng) 兼用駕駛員體力和發(fā)動(dòng)機(jī)(或電機(jī))的動(dòng)力為轉(zhuǎn)向能源的轉(zhuǎn)向系統(tǒng), 它是在機(jī)械轉(zhuǎn)向系統(tǒng)的基礎(chǔ)上加設(shè)一套轉(zhuǎn)向加力裝置而形成的。其中屬于轉(zhuǎn)向加力裝 置的部件是(如圖5.2.1所示): 轉(zhuǎn)向油泵5、轉(zhuǎn)向油管4、轉(zhuǎn)向油罐6以及位于整體式轉(zhuǎn)向器10內(nèi)部的轉(zhuǎn)向控制閥 及轉(zhuǎn)向動(dòng)力缸等。當(dāng)駕駛員轉(zhuǎn)動(dòng)轉(zhuǎn)向盤1時(shí),轉(zhuǎn)向搖臂9擺動(dòng),通過轉(zhuǎn)向直拉桿11、橫 拉桿8、轉(zhuǎn)向節(jié)臂7,使轉(zhuǎn)向輪偏轉(zhuǎn),從而改變汽車的行駛方向。 1.方向盤 2.轉(zhuǎn)向軸 3.轉(zhuǎn)向中間軸 4.轉(zhuǎn)向油管 5.轉(zhuǎn)向油泵 6.轉(zhuǎn)向油罐 7.轉(zhuǎn)向節(jié)臂 8.轉(zhuǎn)向橫 拉桿 9.轉(zhuǎn)向搖臂 10.整體式轉(zhuǎn)向器 11.轉(zhuǎn)向直拉桿 12.轉(zhuǎn)向減振器 圖 5.6 動(dòng)力轉(zhuǎn)向機(jī)構(gòu)圖 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 27 與此同時(shí),轉(zhuǎn)向器輸入軸還帶動(dòng)轉(zhuǎn)向器內(nèi)部的轉(zhuǎn)向控制閥轉(zhuǎn)動(dòng),使轉(zhuǎn)向動(dòng)力缸產(chǎn) 生液壓作用力,幫助駕駛員轉(zhuǎn)向操縱。這樣,為了克服地面作用于轉(zhuǎn)向輪上的轉(zhuǎn)向阻 力矩,駕駛員需要加于轉(zhuǎn)向盤上的轉(zhuǎn)向力矩,比用機(jī)械轉(zhuǎn)向系統(tǒng)時(shí)所需的轉(zhuǎn)向力矩小 得多。 當(dāng)轉(zhuǎn)子順時(shí)針方向旋轉(zhuǎn)時(shí),葉片在離心力及高壓油的作用下緊貼在定子的內(nèi)表面 上。其工作容積開始由小變大,從吸油口吸進(jìn)油液;而后工作容積由大變小,壓縮油 液,經(jīng)壓油口向外供油。由于轉(zhuǎn)子每旋轉(zhuǎn)一周,每個(gè)工作腔都各自吸、壓油兩次,故 將這種型式的葉片泵稱為雙作用式葉片泵。雙作用葉片泵有兩個(gè)吸油區(qū)和兩個(gè)壓油區(qū), 并且各自的中心角是對(duì)稱的,所以作用在轉(zhuǎn)子上的油壓作用力互相平衡。因此,這種 油泵也稱為卸荷式葉片泵(如圖 5.2.2 所示): 1. 進(jìn)油口 2.葉片 3.定子 4.出油口 5.轉(zhuǎn)子 圖 5.7 卸荷式葉片泵 汽車直線行駛時(shí),閥芯與閥套的位置關(guān)系如圖 5.2.3 中所示。自泵來的液壓油經(jīng) 閥芯與閥套間的間隙,流向動(dòng)力缸兩端,動(dòng)力缸兩端油壓相等。駕駛員轉(zhuǎn)動(dòng)方向盤時(shí), 閥芯與閥套的相對(duì)位置發(fā)生改變,使得大部分或全部來自泵的液壓油流入動(dòng)力缸某一 端,而另一端與回油管路接通,動(dòng)力缸促進(jìn)汽車左傳或右轉(zhuǎn)。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 28 圖 5.8 閥套與閥芯的位置關(guān)系圖 轉(zhuǎn)向油泵是助力轉(zhuǎn)向系統(tǒng)的動(dòng)力源。轉(zhuǎn)向油泵經(jīng)轉(zhuǎn)向控制閥向轉(zhuǎn)向助力缸提供一 定壓力和流量的工作油液。目前,轉(zhuǎn)向油泵大多采用雙作用式葉片泵。這種油泵有兩 種結(jié)構(gòu)型式,一種是潛沒式轉(zhuǎn)向油泵,另一種為非潛沒式轉(zhuǎn)向油泵。本圖 5.2.4 所示 為潛沒式油泵,它與貯液罐是一體的,即油泵潛沒在貯液罐的油液中;非潛沒式轉(zhuǎn)向 油泵的貯液罐與轉(zhuǎn)向油泵分開安裝,用油管與轉(zhuǎn)向油泵相連接。 l.驅(qū)動(dòng)軸 2.殼體 3.前配油盤 4. 葉片 5.儲(chǔ)油罐 6.定子 7.后配油盤 8.后蓋 9.彈簧 10. 管接頭 11.柱塞 12.閥桿 13.鋼球 14.轉(zhuǎn)子 A.出油口 B.出油腔 C.進(jìn)油腔 D.油道 H .主量孔 圖 5.9 非潛式轉(zhuǎn)向油泵圖 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 29 第 6 章 汽車轉(zhuǎn)向系統(tǒng)常見故障分析及處理方法 在汽車行駛時(shí),轉(zhuǎn)向系經(jīng)常發(fā)生各種故障,總結(jié)如下幾點(diǎn)常見故障以及處理方 法4。 汽車轉(zhuǎn)向系常見故障主要是:方向盤轉(zhuǎn)動(dòng)過大、操縱不穩(wěn)定、前輪擺頭、跑偏、 轉(zhuǎn)向沉重等。方向盤轉(zhuǎn)運(yùn)過大,操縱不穩(wěn)定檢查轉(zhuǎn)向泵球頭、主銷和襯套、車輪軸 承等處磨損情況,如磨損嚴(yán)重或間隙超限,應(yīng)調(diào)整修理。如無過大磨損或間隙時(shí), 則應(yīng)檢查:第一,轉(zhuǎn)向器蝸輪蝸桿磨損情況,或間隙是否符合規(guī)定,如間隙過大應(yīng) 調(diào)整;第二,轉(zhuǎn)向裝置連接部分的磨損情況,或是否調(diào)整得過松;第三,轉(zhuǎn)向器安 裝部位是否松動(dòng);第四,轉(zhuǎn)向垂臂有松動(dòng)。 要先檢查車輪的動(dòng)平衡。輪胎裝配是否正確,檢查輪胎磨損是否均勻;檢查平 衡塊裝配是否正確。 應(yīng)檢查車輪輪輞有否變形;車輪有否橫向偏擺或徑向擺動(dòng);減震器有否松動(dòng)或 磨損;轉(zhuǎn)向橫、直拉桿球節(jié),或轉(zhuǎn)向器裝配有否松動(dòng);彈簧鋼板的 U 形螺栓、中心 夾緊螺栓是否有松動(dòng)或損壞;后傾角是否正確;輪胎氣壓是否正確。 除按高速擺頭檢查項(xiàng)目中的內(nèi)容外,特別要著重檢查下列各頂:輪胎氣壓是否 正確;轉(zhuǎn)向節(jié)軸承有否松動(dòng);轉(zhuǎn)向橫、直拉桿球節(jié)有否松動(dòng);轉(zhuǎn)向器裝配是否有松 動(dòng);彈簧鋼板的 U 形螺栓、中心夾緊螺栓是否有松動(dòng)或損壞;彈簧鋼板是否發(fā)生殘 余變形。3、汽車跑偏汽車行駛時(shí)跑偏,可檢查下列各項(xiàng):輪胎氣壓是否相等或輪 胎直徑是否相等;車輪軸承是否一邊過緊;彈簧鋼板是否兩邊彈力不均或變形;前 束是否正確,外傾角是否相等;轉(zhuǎn)向節(jié)臂、轉(zhuǎn)向節(jié)有否變曲或變形;后橋軸管有否 彎曲;兩邊軸距是否相等。 對(duì)于動(dòng)力轉(zhuǎn)向機(jī)構(gòu)而言,它又有以下幾個(gè)常見的故障: (1) 轉(zhuǎn)向沉重 動(dòng)力轉(zhuǎn)向液壓系統(tǒng)中有空氣,排除的方法有擰松放氣螺釘,使發(fā)動(dòng)機(jī)在怠速狀態(tài) 1 下工作,反復(fù)將方向盤左、右打到底,觀察油泵儲(chǔ)油室,直到?jīng)]有氣泡排除為止, 擰緊放氣螺釘。 動(dòng)力轉(zhuǎn)向液壓缺油,排除的方法是檢查油罐中油面高度,正常油面高度應(yīng)該位于 2 油標(biāo)尺上、下標(biāo)記之間,加油后如果發(fā)現(xiàn)有泄露應(yīng)該即使更換相關(guān)零件或送去修理。 油泵溢流閥或限壓閥卡死,排除的方法是檢查、拆洗溢流閥使其正常工作。 3 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 30 油罐中濾芯堵塞,使油泵供油不足,排除的方法是檢查更換濾芯。 4 液壓管路堵塞,排除的方法是檢查,清洗,疏通堵塞的管路。 5 (2)左右轉(zhuǎn)向輕重不同: 液壓油臟污使轉(zhuǎn)向控制閥運(yùn)動(dòng)受到阻滯,排除的方法是更換液壓油,排盡轉(zhuǎn)向器 1 中的油,然后在怠轉(zhuǎn)發(fā)動(dòng)機(jī)使油面恢復(fù)正常。 扭桿永久變形、失效或扭桿和軸套配合位置有誤差,排除的方法是更換新的螺桿 2 總成。 轉(zhuǎn)向控制閥不平衡或磨損,排除的方法是檢查并更換。 3 (3)其他一些故障以及排除的方法和前面所講過的類似。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 31 第 7 章 結(jié)論 本文主要講述了汽車轉(zhuǎn)向機(jī)構(gòu)的設(shè)計(jì)、分析,同時(shí)還有各部分組成部分的選擇, 以及它們的作用,并且也講述了一些汽車轉(zhuǎn)向系常見的故障及排除的方法。 由以上內(nèi)容我們可以知道,汽車轉(zhuǎn)向時(shí),要使各車輪都只滾動(dòng)不滑動(dòng),因?yàn)榛瑒?dòng) 會(huì)加快輪胎的磨損,并且會(huì)降低汽車行駛的穩(wěn)定性,而要讓汽車在轉(zhuǎn)向過程中做到純 滾動(dòng)而不滑動(dòng)就要滿足一定的條件,也就是各車輪必須圍繞一個(gè)中心點(diǎn)轉(zhuǎn)動(dòng),同時(shí)這 個(gè)中心要落在后軸中心線的延長(zhǎng)線上,并且左、右前輪也必須以這個(gè)中心點(diǎn)為圓心而 轉(zhuǎn)動(dòng)。而有上面第 4 章所顯示的結(jié)果表明,本文所設(shè)計(jì)的轉(zhuǎn)向機(jī)構(gòu)基本上滿足以上條 件,也就是能實(shí)現(xiàn)車輛在轉(zhuǎn)彎時(shí)純滾動(dòng)。因此我們也可以說判斷一個(gè)汽車轉(zhuǎn)向機(jī)構(gòu)的 運(yùn)動(dòng)性能的優(yōu)劣就是看它的兩前輪軸線的交點(diǎn)運(yùn)動(dòng)軌跡和后兩輪軸線的延長(zhǎng)線的接近 情況,同樣我們用實(shí)驗(yàn)表面只要改變車輛的技術(shù)參數(shù)就能改善車輛的轉(zhuǎn)向性能,也就 是說應(yīng)該盡可能的縮小搖桿長(zhǎng)度,縮小軸距及輪距,加大最小轉(zhuǎn)彎半徑。 對(duì)于動(dòng)力轉(zhuǎn)向而言,雖然在這片文章并沒有設(shè)計(jì),但它是現(xiàn)在好多高級(jí)汽車以及 大型汽車所運(yùn)用的,它的發(fā)展前景也是很大的,因?yàn)樗梢怨?jié)省駕駛員的體力,使汽 車的轉(zhuǎn)向更為輕松。 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 32 參考文獻(xiàn) 1. 劉惟信 汽車設(shè)計(jì)M 北京:清華大學(xué)出版社,2001.7 2. 周全申,喬永欽,朱琳 車輛轉(zhuǎn)向機(jī)構(gòu)設(shè)計(jì)與分析 J. 河南工業(yè)大學(xué)學(xué)報(bào) 2006 年 4 月:1673-2383(2006)02-0060-03 3. 浙江省交通學(xué)校 汽車構(gòu)造圖冊(cè)(底盤)M 北京:人民交通出版社,1994 4. 鞏向春,大型載貨汽車動(dòng)力轉(zhuǎn)向的故障排除J.甘肅科技 2005 年 5. 鄭文緯,吳克堅(jiān) 機(jī)械原理(第七版)M 北京:高等教育出版社 6. 徐灝 機(jī)械設(shè)計(jì)手冊(cè)M 北京: 機(jī)械工業(yè)出版社 1991 年 7. 劉蘇 AutoCAD 2002 應(yīng)用教程 M 北京:科學(xué)出版社,2003 年 8. 底盤構(gòu)造網(wǎng)絡(luò)教程第 16 講轉(zhuǎn)向操作機(jī)構(gòu)和執(zhí)行機(jī)構(gòu) DB/OL. 9. 劉振生,孔江生,侯瑞生, 淺談?shì)喪睫D(zhuǎn)向機(jī)構(gòu)J.農(nóng)機(jī)使用與維修 10. 余志生 汽車?yán)碚?(第三版) M 北京: 機(jī)械工業(yè)出版社,2001 年 11. 王望予 汽車設(shè)計(jì)(第四版)M 北京:機(jī)械工業(yè)出版社, 2006 年 12. P.A.Simionescu,Ilie Talpasanu. Synthesis and analysis of the steering system of an adjustable tread-width four-wheel tractorJ ScienceDirect,2007,526-540 13. A.H.Falah,M.A.Alfares,A.H.Elkholy. Failure investigation of a tie rod end of an automobile steering systemJ ScienceDirect,2007,895-902 14. B.C.Besselink. Development of a vehicle to study the tractive performance of integrate steering-drive systemsJ ScienceDirect,2004,187-198 15. J.Giacomin,M.S.Shayaa,E.Dormegnie,L.Richard. Frequence weighting for the evaluation of steering wheel rotation vibrationJ ScienceDirect,2004,527-541 16. Thomas Bak ;Hans Jakobsen. Agricultural Robotic Platform with Four Wheel Steering for Weed DetectionJ ScienceDirect,2004,125-136 北京化工大學(xué)畢業(yè)設(shè)計(jì)(論文) 33 致謝 經(jīng)過兩個(gè)多月的畢業(yè)設(shè)計(jì)就要結(jié)束了,在此本人要感謝所有輔導(dǎo)我的老師,是他們 教會(huì)了做研究的方法,在畢業(yè)設(shè)計(jì)過程是他們給我提供了很大的幫助,幫助我順利完成 所研究的課題,同時(shí)本人還要感謝學(xué)校這四年來對(duì)我的培養(yǎng),以及給本人鍛煉的機(jī)會(huì), 讓本人在以后的生活或者工作中,能夠積累一定的實(shí)踐和研究基礎(chǔ)。 同時(shí)本人還要感謝我的同學(xué)和朋友,在做畢業(yè)設(shè)計(jì)過程中,他們也給予我很大的 幫助,最后本人還要感謝我的父母,是他們給了本人上大學(xué)的機(jī)會(huì),讓我得到鍛煉, 在以后的工作中,我將用我的努力和積極來回報(bào)所有幫助本人的人。
收藏