油泵齒輪殼鑄造工藝及模具(芯盒)設計
油泵齒輪殼鑄造工藝及模具(芯盒)設計,油泵齒輪殼鑄造工藝及模具(芯盒)設計,油泵,齒輪,鑄造,鍛造,工藝,模具,芯盒,設計
油泵齒輪殼鑄造工藝及模具(芯盒)設計
課程設計說明書
題 目:油泵齒輪殼鑄造工藝及模具(芯盒)設計
院 別:
專 業(yè):材料成型及控制工程(模具CAD/CAM)
姓 名:
學 號:
指導教師:
日 期: 2014年01月10日
油泵齒輪殼鑄造工藝及模具(芯盒)設計
摘要
對于載重汽車、卡車、消防車、牽引全掛車以及其改裝車型等中型汽車而言,當前油泵齒輪殼的需求也越來越大,因此在油泵齒輪殼上也有比較高的要求,然而全國汽車生產(chǎn)量巨大,加上汽車配件量的需求也多,整車維修總量大,東風生產(chǎn)的各種油泵齒輪殼的產(chǎn)量僅能維持自身的供給,難以確保對外界的供給。因此本設計的目的,是讓中小型企業(yè)擁有對中型貨車油泵齒輪殼自行制造的能力,并且能以較低的設備成本投入,通過改善提高工藝性能的方案和控制模具(芯盒)精度等方式,來獲取精度要求能與原廠生產(chǎn)油泵齒輪殼媲美的油泵齒輪殼。
關鍵詞:中型貨車;東風汽車公司;油泵齒輪殼;工藝;模具;芯盒
目 錄
1、零件及加工分析 1
1.1.零件分析 1
1.2.零件加工方案分析 1
2、鑄造方案的類型和確定 2
2.1.鑄造方式: 2
2.2.制型方案: 2
2.3.模腔數(shù)量 3
2.4.砂型、砂芯材料選擇: 4
2.5.模樣及芯盒材料: 4
2.6.澆注系統(tǒng)形式選型: 5
3、鑄造工藝設計 6
3.1.工藝設計參數(shù): 6
3.2.澆注位置: 7
3.3.鑄造分型面: 8
3.4.砂型(型腔)上下模確定: 9
3.5.砂芯設計: 9
4、澆注系統(tǒng)設計 10
4.1.澆注時間的確定 10
4.2.阻流截面面積的確定 11
4.3.內(nèi)澆道設計 13
4.4.橫澆道設計 13
4.5.直澆道設計 14
4.6.澆注系統(tǒng)的分布 14
5、芯盒設計 15
5.1.芯盒的總體布局 15
5.2.芯盒的主要結構設計 15
5.3.芯盒的附具設計 15
6、芯盒工裝設計 16
參考文獻 17
致 謝 18
1、零件及加工分析
1.1.零件分析
1.1.1.零件主要結構分析:
圖1 油泵齒輪殼箱體
汽車公司生產(chǎn)零件油泵齒輪殼箱體的零件圖如圖1所示,該油泵齒輪殼箱體是為一軸式結構,安裝輸出軸,是本箱體最為核心的部位。箱體左右兩端平整,用以與其他零件相安裝連接。
1.1.2.制造工藝要求:
根據(jù)實際生產(chǎn)中的要求,總體歸納為以下4點:
1)工藝的實踐性要強,操作要輕便;
2)模具結構簡單,制造容易;
3)工藝和模具的經(jīng)濟性好;
4)方便清砂。
由此,本設計的設計原則必須遵循以上提及的4個總體要求。
1.2.零件加工方案分析
根據(jù)零件的結構性以及尺寸形位公差的要求,本設計箱體的總體制造方案分為兩步:第一步為鑄造;第二步進行各有加工要求的部位以鏜、銑等基本的機械加工手段進行加工,最終達到圖紙所要求的精度。
2、鑄造方案的類型和確定
2.1.鑄造方式:
鑄造方式多種多樣,而在這些方式里面,較為普遍的而且實用性較高的方式主要為以下幾種:砂型鑄造、消失模鑄造以及壓鑄。
2.1.1.砂型鑄造:
砂型鑄造成本很低,制作方便,能通過人工、機械造型,能滿足一般鑄件需求。但是一次鑄造成型砂型必須重新制作,需要另設造型設備,不能鑄造直徑小于30mm以下的孔類部位。
2.1.2.消失模鑄造:
鑄造精度較高,能制作各種小孔類型的部位,適應于制作形狀較為復雜的鑄件,由于模樣的高溫融化,所以取件不須考慮型芯或型腔因結構復雜而造成取模障礙等問題。然而一次模樣也是只能使用一次(因為在高溫鑄造過程中模樣會融化消失),消失模自身的力學性能較差,容易變形。
2.1.3.壓鑄:
壓鑄的精度非常高,在高壓下能輕松鑄造至每一個精細的部位、角落和小孔等,能鑄出結構復雜的工件。不過設備成本非常高,對鑄造材料很有要求,鑄鐵類等材料均不宜進行壓鑄。
方案確定:如上比較分析,本設計由于箱體鑄件材料正好是鑄鐵,因此不能使用壓鑄方式;由于該箱體壁厚7-10毫米,消失模強度不足,在鑄造操作過程中會變形,最終很可能導致鑄件變形量超差。因此本設計選擇砂型鑄造。
2.2.制型方案:
本設計在2.1的鑄造方式里已經(jīng)確定為砂型鑄造,因此型砂和型芯的制型方式也需要確定下來,普遍的制型方式主要有兩種:手工造型和機械造型。
2.2.1.手工造型:
不用額外購買造型設備,在單件小批量生產(chǎn)中成本低。不過勞動強度高,操作人員數(shù)量大,制型精度難以得到保證,造型生產(chǎn)周期長。
2.2.2.機械造型:
造型速度快,造型精度高,適應于中、大批量生產(chǎn)。需要額外投入經(jīng)費購買造型機,根據(jù)不同型號的造型機價格有所不一。
方案確定:綜合比較分析后,根據(jù)本設計生產(chǎn)實際需要,砂型精度要求比較高,手工造型無法滿足這種要求,而且本設計規(guī)模為中、大批量生產(chǎn),手工造型會導致工人勞動強度過大,需要操作人員也多,加上生產(chǎn)周期長,到最后成本還會過高。因此選擇為機械造型,一次投資購買造型機,而造型機中,主要型號有Z145A Z148B Z230B其中Z145A適用的砂箱較小,制型數(shù)量有限,不能滿足批量生產(chǎn)要求,Z230B造型機過大,用砂量大以及較耗費人力是主要缺陷,而型號Z148B造型機則能綜合滿足以上要求,能滿足本設計箱體的生產(chǎn)規(guī)模,同時也能節(jié)省用砂量。因此造型機選為Z148B。
2.3.模腔數(shù)量
模腔數(shù)量是指一套鑄型在一次裝配并進行鑄造后,所獲得的鑄件數(shù)量,這個參數(shù)直接影響到型腔和澆注系統(tǒng)的布局以及用以制造砂型的砂箱的大小的設計,因此此項選擇不容缺失。
2.3.1.一型一腔:
一型一腔最大的特點就是鑄件的空間所占用砂箱空間少,易于鑄件及澆注系統(tǒng)在其內(nèi)的布局。但是部分方向的吃砂量只為單一個鑄型而設置,在本設計已確定的Z148B造型機中,這種布局會造成用砂量巨大浪費,而且單腔生產(chǎn)數(shù)量的難以滿足較大生產(chǎn)規(guī)模的要求。
2.3.2.一型四腔:
較一型一腔式等批量生產(chǎn)更為節(jié)省用砂量,生產(chǎn)規(guī)模較大。然而由于要考慮砂芯和芯盒所要騰出的芯頭尺寸的空間,有可能會因此而使得所選用的砂箱較大,因此澆注系統(tǒng)以及鑄件擺放的方位需要有比較精細的安排,而且對鑄造工裝的裝配精度要求較高。
方案確定:由于本課題選擇購買的造型機型號為Z148B,從用砂量的節(jié)省角度以及生產(chǎn)規(guī)模需求角度考慮,更適合于一型四腔。因此本設計選定一型四腔。
2.4.砂型、砂芯材料選擇:
同一套砂型和砂芯雖然是鑄造同一個鑄件,然而各自負責成型部位不一樣,工作的環(huán)境和工藝性能也有所不一,對材料的依賴性很高,因此合理地對砂型和砂芯的型砂材料的選擇是提高鑄造工藝性以及經(jīng)濟性的重要環(huán)節(jié)之一。
常用的砂芯材料有:水玻璃砂,冷硬樹脂砂,粘土砂,潮模煤粉砂
方案確定:在本設計中,鑄件外表面需要有較高表面質量,不應機械粘砂,因此外模砂選用潮模煤粉砂。
而由于本設計中,油泵齒輪殼內(nèi)部結構有內(nèi)凸部位,如果用水玻璃砂或者粘土砂這些較硬的芯砂,將必須經(jīng)過敲擊才能逐步取芯,特別是粘土砂,如果粘在內(nèi)部的內(nèi)壁上,在敲擊的過程中稍有不慎很容易會傷及鑄件本體,加上該設計的油泵齒輪殼最薄的壁厚僅有7毫米,如此的敲擊很容易會對其進行損害,所以水玻璃砂和粘土砂不大可取,然而冷硬樹脂砂在鑄造的冷卻過程中,金屬會逐步收縮包緊型芯,利用冷硬樹脂砂與鐵水接觸表面的樹脂砂層強度的喪失,相互之間的距離會收縮,從而減少鑄件的收縮阻力,降低了鑄件的內(nèi)應力及日后工作過程中開裂的傾向。因此本設計中砂芯選用冷硬樹脂砂。
2.5.模樣及芯盒材料:
模樣是用來對型腔成型的必要工具,芯盒是用于制作砂芯的母體。而這兩者的材料各種各樣,木制、塑膠、金屬,各自的使用性能、制造成本、加工工藝以及加工難度也各不一樣,正確的選擇模樣和芯盒的材料同樣是直接影響零件最終制造成本的關鍵因素之一。
芯盒材料分三種,木材,塑料和金屬,其中金屬是三者中最為昂貴的材料,加工難度也因模樣或芯盒的外形尺寸而變化,有的可以通過壓鑄直接獲得所需的成品,有的需要鑄造后進行后機械加工或者熱處理或者電鍍加工等等方可投入使用。但金屬耐磨性是三者中最高的,而且強度很高,在高壓力的噴砂、壓砂和振砂的工作條件下依然能保持結實的狀態(tài),盡管在批量生產(chǎn)工作后出現(xiàn)的小部分破損或者磨損,也能通過電焊的方式進行填補修復工作,通過電鍍后在此進行機械加工也能恢復表面質量,因此維修效率和性價比都高。
方案確定:結合本設計需求和對表格內(nèi)容的分析,生產(chǎn)規(guī)模較大,如果用塑料和木材作為模樣的話,長期進行造型工作中導致變形和失效。而選用金屬的話將能滿足長時間砂型造型工作而不被磨損和變形的要求。因此本設計選擇金屬作為模樣材料,為了防銹需要,具體選擇鑄鋁合金,牌號為ZL-106,而芯盒的材料牌號選定為ZL-108。
2.6.澆注系統(tǒng)形式選型:
澆注系統(tǒng)是整個鑄造系統(tǒng)中重要的組成部分,不同形式的澆注系統(tǒng)會影響到灰鐵金屬液體澆注的流動狀況以及和卷氣情況,最終決定了鑄件密度和內(nèi)部質量。
澆注系統(tǒng)分:全封閉式,半封閉式,開放式,三種。
方案確定:由于本設計對鑄件的鑄造精度和表面質量有比較高的要求,因此不允許出現(xiàn)斷續(xù)澆注的情況,而且澆注均勻,不卷氣,而且沖刷力應足夠大,因此應選擇全封閉式澆注系統(tǒng)。即直流道橫截面積必須大于橫澆道橫截總面積之和,橫澆道橫截面積之和必須大于內(nèi)澆道總面積之和。而且在直流道底部必須設有直流道窩,在橫澆道頂部要設有燕尾式斜角。
3、鑄造工藝設計
在所有的工程設計中,工藝設計必不可少,而鑄造工藝,主要就是根據(jù)鑄造零件的結構特點、技術要求、生產(chǎn)批量和生產(chǎn)條件等,確定鑄造工藝方案和工藝參數(shù),繪制鑄造工藝圖,編織工藝卡等技術文件。鑄造工藝設計的好壞,對鑄件品質、生產(chǎn)率和成本起著重要作用,而鑄造工藝設計也是本設計中的工作重點。
3.1.工藝設計參數(shù):
3.1.1.鑄件尺寸公差:
本設計中得鑄件尺寸公差,是從通過資料[2] P39表2-12中獲得的,根據(jù)實際生產(chǎn)的要求以及生產(chǎn)規(guī)模,鑄件的公差定為CT11級,在此表格中具體每一個尺寸范圍都有對應的公差值,單位為mm。而本設計的主要對象是芯盒,主要加工結構為內(nèi)腔結構,在批量生產(chǎn)中,長期與型砂的摩擦和接觸,都會帶來一定的磨損。因此為了保留磨損余量,盡可能提高芯盒耐用度,特選擇尺寸公差值為負偏差。
3.1.2.鑄件重量公差:
本設計給定兩個鑄件加上澆注系統(tǒng)的總公稱重量,范圍在40~100kg內(nèi),從資料[2] P40表2-13中本設計取得鑄件重量公差為12%。
3.1.3.機械加工余量:
通過資料中,結合P41表2-14 表2-15及P42表2-16的綜合查選,根據(jù)最大尺寸100~250mm范圍內(nèi)所對應的G級選擇加工余量為2.0mm,為確保安全,特預為機械加工工人預留略多些的余量,取為2.5mm。
3.1.4.鑄件收縮率(模樣、芯盒放大率):
本設計的鑄件收縮率是通過 資料 P43表2-17中獲得的,此表格中有兩個可供參考的欄目,分別是中國機械工程學會資料和美國鑄造學會資料,兩者略有不一,而本設計根據(jù)這是提供國內(nèi)中小型企業(yè)的生產(chǎn)設計,應更趨于使用中國標準,因此參考表2-17中左欄的參數(shù),條件為中小型件,受阻收縮,因此收縮率為0.7-0.9%。
3.1.5.最小鑄出孔槽:
根據(jù)灰鑄鐵的材料特性以及現(xiàn)有實際生產(chǎn)經(jīng)驗,在本設計中,設定為鑄出的孔直徑不能小于,而由于本油泵齒輪殼箱體的倒檔齒輪的卡槽為內(nèi)部的盲槽,對日后機械加工不方便,因此該2個槽皆應直接在鑄造時鑄出。
根據(jù)工藝參數(shù),本設計的鑄件圖如圖2所示,詳見原CAD圖或圖紙。
圖2 油泵齒輪殼箱體鑄件圖
3.2.澆注位置:
鑄件的澆注位置是指澆注時鑄件在鑄型中的位置,澆注位置需要考慮以下的原則:
1)鑄件的重要部位、重要加工面應該朝下或者呈直立狀態(tài);
2)使鑄件的大平面應該朝下;
3)應保證鑄件能充滿;
4)應有利于鑄件的補縮;
5)盡可能避免吊砂、吊芯或者單邊懸臂式砂芯,便于下芯、合箱以及檢驗。
經(jīng)過綜合的考慮,選擇為圖3的澆注位置,中注式。
圖3 中注式澆注位置
3.3.鑄造分型面:
分型面是指兩半鑄型相互接觸的表面,本設計中有以下方案
如圖4-A所示,分型面是則能大大提高模底板的通用性以及分型面的簡易程度,分型面的平直意味著對模底板的通用性提高,只要是平直的底板即可使用,而且還會在兩個大軸圓邊上出現(xiàn)不可避免的工藝角,但由于其工藝角厚度非常小,能在鑄造完畢后通過清理修配方式進行簡單的處理即可達到要求。
圖4-A 分(模)型面
3.4.砂型(型腔)上下模確定:
由于澆注系統(tǒng)往往是設置在上砂型(型腔)中,砂型(型腔)上下模會因為鑄件所占的高度不一而使得澆注系統(tǒng)占用的空間體積不一,再者靜壓力是否足夠也是個需要考慮的要素。具體如圖5-A
圖5-A
3.5.砂芯設計:
根據(jù)工藝參數(shù)的要求,砂芯的設計主要是隨形成型。
3.5.1.芯頭形狀設計:
本設計中的芯頭有2個,用以成型2個主軸孔的水平芯頭,2個水平芯頭皆為圓柱延伸體,頂部垂直芯頭為垂直方向往上延伸的隨形延伸體。
3.5.2.芯頭尺寸設計:
由于砂芯長度最大尺寸接近200mm,高度最大尺寸也超過100mm,因此為了讓砂芯擁有足夠的強度,2個水平芯頭皆設定為40mm,直徑與圖紙原加工部位直徑一致,頂部砂芯高度也為40mm。
4、澆注系統(tǒng)設計
4.1.澆注時間的確定
計算體積,單個鑄件(機械加工余量已經(jīng)算入)約為5.2kg 澆注系統(tǒng)給定重量為4.5kg,拋灑系數(shù)1.02
得本設計中鑄造總重量約為W澆=(5.2kg4件+4.5kg)x1.02=25.806kg
4.1.1.澆注時間計算:
通過查 資料[1] P136表3-2查得適用公式為
其中鑄件厚度為7.0mm,所以S取1.95,而G則是鑄造總重量(即4個鑄件重量+澆注系統(tǒng)重量),G為25.806kg。
代入運算
4.1.2.澆注時間校核:
通過 資料[1] P136式3-1
式中v——液面上升速度(mm/s);
h——鑄件澆注時的高度,此處為150mm;
t——澆注時間,已算出9.9s。
代入運算
然后查 資料[1] P136表3-3校驗,正好大于所要求最小液面上升速度15mm/s,所以澆注時間計算合理。
4.2.阻流截面面積的確定
阻流截面面積,通過 資料[1] P137式3-2
式中 ——阻流截面面積(cm);
G ——澆注系統(tǒng)(kg);
——流量系數(shù)
t——澆注時間(s);
HP——作用于內(nèi)澆道的金屬液靜壓頭,一般取平均壓頭(cm)。
4.2.1.鑄件重量:
澆注重量G為單個鑄件重量+澆注系統(tǒng),即=(5.2kg+1.1kg)x1.02=6.426kg
4.2.2.流量系數(shù)的計算:
先通過 資料[2] P138表3-6取值,干型,結構相對簡單,阻力取中等,因此取得0.48。
然后在表3-7進行細分修正:
1)從1280°起每50°C則+0.025,本設計澆注溫度選為1400°C,所以+0.05;
2)本設計不設有冒口,此處不修正;
3)根據(jù)設計從 資料[2] P65表3-6查得薄壁灰鑄件砂型鑄造的澆注系統(tǒng)面積比例為,則不符合,所以此處不修正;
4)阻流后澆注系統(tǒng)的截面面積比較均勻,沒有明顯的擴大,此處不修正;
5)本設計單個鑄件設有2個內(nèi)澆道,-0.05;
6)雖然本設計不設有冒口,但型砂特別是砂芯的型砂為自硬樹脂砂,通氣性較好,此處不修正;
7)本設計為中間注入式,此處不作修正
最終得出=0.48。
4.2.3.平均壓頭Hp計算計算:
通過 資料[1] P138式3-3查得
式中C——澆注時鑄件高度,此處為43.5cm;
P——內(nèi)澆道以上的鑄件高度,此處,即為21.75cm;
Ho——內(nèi)澆道以上的金屬液壓頭,等于內(nèi)澆道到澆口盆液面的高度(cm)。為確定Ho,需要先計算壓力角。
給定鑄件與內(nèi)澆道接觸邊緣至直澆道中心線距離為35mm,經(jīng)過計算,L為150mm
給定單個砂型的澆注高度為83mm,上下砂型相同。
則有,則算出=28.8°
通過 資料[3] P131表3-13查得高于要求值10°,所以壓力角符合要求,設計合理,得Hm剩余壓頭高度為40mm,Ho=83mm=8.3cm。
最后代入公式
由上面已完全確定的 G、、Hp以及t,則可以代入原式計算
即阻流截面面積為2.58cm。
4.3.內(nèi)澆道設計
4.3.1.內(nèi)澆道形狀設計:
由 資料[2] P55圖3-11,參考(a)方案,扁平梯形,因為本設計的鑄件最小壁厚只有7mm,根據(jù)鑄造的澆注系統(tǒng)設計原則,內(nèi)澆道高度應該小于鑄件的最小壁厚,而且本設計為中間注入式澆注,所以方梯形,高梯形,圓形內(nèi)澆道均不適合。給定內(nèi)澆道高度為12毫米,斜度約為2°,在橫截面中上下底長度近乎一致,為簡化計算和模樣加工,所以直接取為相等,即本設計的內(nèi)澆道橫街面積定為矩形。
4.3.2.內(nèi)澆道尺寸設計:
考慮到應安全系數(shù),阻流截面面積應該放大,取值為=258mm,即單個內(nèi)澆道的截面面積為,即=129mm。又因h=12mm,所以b=35mm。長度視橫澆道的尺寸而定。
4.4.橫澆道設計
4.4.1.橫澆道形狀設計:
橫澆道橫截面形狀為等腰梯形,為阻擋最先進入澆道而且溫度相對低的金屬液體不進入型腔,因此本設計橫澆道設有為傾斜末端。
4.4.2.橫澆道尺寸設計:
根據(jù)設計從 資料[2] P65表3-6查得澆注系統(tǒng)各澆道橫截面面積比例為
則
(注:為兩個鑄件所有內(nèi)澆道的面積代數(shù)和)
則一邊的橫澆道橫截面積為。
由于本設計橫澆道梯形為等腰梯形,設水平中線長度b,高度h=1.4b,得面積,即可求出b=20mm ,h=12mm。上下底分別相對中線,則上底長16mm,下底長20mm,高度取整12mm。
4.4.3.橫澆道長度設計:
考慮到先到達液體應進入橫澆道的末端,所以從內(nèi)澆道之外延伸30mm,兩內(nèi)澆道之間間隔為80mm,則總長度為150mm。
4.5.直澆道設計
4.5.1.直澆道形狀設計:
本設計的直澆道為直通型的圓柱體形狀,從砂型的頂部直接開通連接到橫澆道上的形式。
4.5.2.直澆道尺寸設計:
同上橫澆道設計,根據(jù)
則可求出半徑R為13.53mm,取整為13.5mm。即直澆道為。
長度因為是直通式,所以設計為250mm。
為避免在澆注過程中發(fā)生反沖紊流現(xiàn)象,在直澆道的底部,即下砂型的頂部開設半球型的直澆道窩,尺寸為SR13.5。
4.6.澆注系統(tǒng)的分布
內(nèi)澆道分布設計,兩內(nèi)澆道應該正好與鑄件的邊緣接觸。詳細請見CAD鑄造工藝圖所示。直澆道分布在兩個內(nèi)澆道距離上的正中央,直澆道的外圓邊緣與內(nèi)澆道之間的距離已超過了1.5倍橫澆道的高度,因此擁有足夠的浮渣行程。
5、芯盒設計
5.1.芯盒的總體布局
芯盒是用來制作砂芯的主要部件,在本設計中芯盒選為對開式芯盒,分為兩大部分,上芯盒和下芯盒,直接靠雙芯盒的分型。
5.2.芯盒的主要結構設計
5.2.1.芯盒分模面設計:
芯盒的分模面可選與鑄造的分模面一樣,都可選擇平面分型面和曲面分型面,然而由于芯盒要制作的砂芯部位包括了芯頭,如果依然采用平線過渡的話,將會浪費型砂,由于砂芯的型砂是自硬砂,價格相對很昂貴,因此為了盡可能的讓型砂都充分利用,分型面會隨著芯頭圓心所在的位置而發(fā)生變化。
5.2.2.壁厚設計:
根據(jù) 資料[1] P275圖6-19,經(jīng)過計算,本設計芯盒的平均輪廓尺寸為約200mm,則芯盒壁厚取為10mm。
5.2.3芯盒本體加強筋設計:
芯盒本體加強筋取為與芯盒壁厚相當,為6mm,布置在芯盒急拐角、容易變形以及應力集中的部位。
5.2.4.耐磨片設計:
本設計的芯盒刮砂面頂端設有2根3mm厚的條形防刮窄片,使用錐沉頭螺釘進行固定,以保證在不影響刮砂前提下又能緊固防刮片。
5.3.芯盒的附具設計
5.3.1.芯盒導向機構:
本設計的芯盒是以定位銷和定位套進行定位,采用的是自行設計的可換導套座及可換銷座,該2個可換座的尺寸和裝配關系詳細請見可換套座的零件圖以及芯盒裝配圖。
6、芯盒工裝設計
芯盒工裝設計重點在于夾緊裝置,芯盒在合模之后,充砂之前,施加夾緊力是必不可少的。在實際生產(chǎn)中,轉動對開式芯盒的夾緊手段以活節(jié)螺栓與蝶形螺母為主,有的企業(yè)甚至為了獲得更大的夾緊力,采用渦輪蝸桿機械式鎖緊,甚至氣壓液壓式夾緊裝置。而本設計由于鑄件屬于中小型尺寸,用砂量相對少,充砂漲型不大,因此不必采用渦輪蝸桿或者氣液壓夾緊裝置,出于本芯盒外形結構特征,并非轉動對開式芯盒,因此本設計的夾緊裝置為一種自行設計加工的緊固套。此緊固套工作原理是以緊固套內(nèi)壁在垂直方向7°的斜面對本芯盒特設置的垂直方向7°加強筋進行接觸,角度為7°所提供的自鎖力足夠承受兩芯盒在水平方向的漲型力,能在不需施加任何外力的前提下確保緊固套本體不會往上反彈??梢妶D17 緊固套裝配示意圖,詳細尺寸請見緊固套CAD零件圖。
參考文獻
[1]韓小峰.鑄造生產(chǎn)與工藝工裝設計.長沙:中南大學出版社,2010
[2]董選普.鑄造工藝學.北京:化學工業(yè)出版社,2009
[3]呂振林.鑄造工藝及應用.北京:國防工業(yè)出版社,2011
[4]杜西靈.鑄造技術與應用案例.北京:機械工業(yè)出版社.2009.
[5]胡成立.朱敏立.材料成型基礎.武漢:武漢理工大學出版社.2001
[6]徐自立.周小平.楊雄.工程材料.武漢:華中科技大學出版社.2003
[7]李凱嶺.機械制造技術基礎.北京:清華大學版社,2010
[8]胡鳳蘭.互換性與技術測量基礎(第二版).北京:高等教育出版社,2010
[9]金大鷹.機械制圖(第3版).北京:機械工業(yè)出版社,2010
[10]成大先.機械設計手冊(第五版).北京:化學工業(yè)出版社,2010
[11]Peikher.Casting:An Analytical Approach.Berlin: Springer Verlag,2005
[12]Mistler.casting practice.America:American Ceramic Society, 2000致 謝
本設計是在我的指導老師的親切關懷和悉心指導下完成的。他嚴肅的科學態(tài)度,嚴謹?shù)闹螌W精神,精益求精的工作作風,深深地感染和激勵著我。從題目的選擇到最終完成,老師都始終給予我細心的指導和不懈的支持。
17
Casting of Brake Disc and Impeller from Aluminium Scrap Using Silica
Sand
?
Matthew S. ABOLARIN, Oluwafemi A. OLUGBOJI, Oladeji A. OGUNWOLE
?
Department of Mechanical Engineering, Federal University of Technology, Minna, Niger State, Nigeria
?
Abstract
The impeller blade and the brake disc were produced using sand casting method. Wooden patterns of the two castings were constructed incorporating the necessary allowances. Green and moulding technique utilizing locally available materials were used for preparing the moulds. Aluminium scraps were used as the casting material. Melting of the Aluminium scraps was obtained using a crucible furnace and finally pouring the molten metal into the sand mould to obtain the impeller and the brake disc.
After fettling and cleaning, the two casting were found to be good. The casting yield was found to be 73.59% for the impeller blade and 85.1% for the brake disc which indicate that sound casting was achieved.
Keywords
Impeller Blade, Brake Disc, Green Moulding, Crucible Furnace, Fettling
?
Introduction
Break disc and impeller
The brake disc is a device for slowing or stopping the rotation of a wheel. A brake disc, usually made of cast iron or ceramic composites (including carbon, kevlar and silica), is connected to the wheel or the axle. To stop the wheel, friction material in the form of brake pads (mounted on a device called a brake caliper) is forced mechanically, hydraulically, pneumatically or electromagnetically against both sides of the disc. Friction causes the disc and attached wheel to slow or stop.
An impeller is a rotor inside a tube or conduit to increase the pressure and flow of a fluid.
Impellers in pumps. An impeller is a rotating component of a centrifugal pump, usually made of iron, steel, aluminum or plastic, which transfers energy from the motor that drives the pump to the fluid being pumped by accelerating the fluid outwards from the center of rotation. The velocity achieved by the impeller transfers into pressure when the outward movement of the fluid is confined by the pump casing. Impellers are usually short cylinders with an open inlet (called an eye) to accept incoming fluid, vanes to push the fluid radially, and a splined center to accept a driveshaft.
Molding
Molding is the process of manufacturing by shaping pliable raw material using a rigid frame or model called a pattern.
A mold is a hollowed-out block that is filled with a liquid like plastic, glass, metal, or ceramic raw materials. The liquid hardens or sets inside the mold, adopting its shape. A mold is the opposite of a cast.
Casting
Casting refers to the pouring of the molten metal into a mould, in which it cools and solidifies to produce an object of desired shape. However, the main casting methods available include: sand casting, in which liquid is poured into a shape cavity moulded from sand; die casting, in which the mould cavity is machined within metal die block; investment and centrifugal casting also exist. Moulding sand has a fairly low thermal conductivity so that the rate of solidification of liquid metal with a sand mould is fairly slow, given rise to a coarse crystal grain size. This of course makes the use of metallic mould more suitable in order to obtain a fine grain structure.
Sand casting
Sand casting is one of the most popular and simplest types of casting that has been used for centuries. Sand casting allows for smaller batches to be made compared to permanent mold casting and at a very reasonable cost. Not only does this method allow manufacturers to create products at a low cost, but there are other benefits to sand casting, such as very small size operations. From castings that fit in the palm of your hand to train beds. one casting can create the entire bed for one rail car, it can all be done with sand casting. Sand casting also allows most metals to be cast depending on the type of sand used for the molds.
Metal castings are vital components of most modern machines and transportation vehicles. Cast metals parts accounts for more than ninety percent of the weight of tractor and more than fifty percent of an automobile engine. Above all, casting provides a process of improving the mechanical properties of components or articles. Aluminium is used because it produces casting of good mechanical properties, such as good surface finish, light weight, fewer tendencies to oxidation, lending to modification, resistance to corrosion and its availability. This work covers the casting of brake disc and impeller blade using a properly prepared green sand mould, which is less expensive and gives less distortion and dimensional accuracy. Aluminum alloy is used because of its fluidity and good physical properties.
?
Theoretical analysis
?Both ferrous and non - ferrous alloys can be cast using green sand method especially when greater tonnage of casting is required. The ferrous alloys cast by this process include cast iron and steel. The commonly non - ferrous alloys cast by this process are aluminum base, copper base and magnesium base alloys. The temperature of these alloys ranges from 680°C to 450°C.
Melting and pouring are processes of preparing molten metal of the proper composition and temperature in foundary using appropriate melting furnace and pouring the prepared molten metal into the mould from transfer ladles. Furnace melting alloys in the foundry include lift out or tilting crucible furnace. For a particular casting alloy, the temperature of pouring is taken with a certain super heat above its liquids temperature. The super heat is chosen depending on the influence of super heat temperature on the structure and mechanical properties of metal, the thickness and extensions of the walls of casting, the liability of the metals to form films, the thermo - physical properties of the mould material and the initial temperature of the mould material, the forces that cause stirring of hot metal in the mould and other factors. The pouring temperature for aluminium alloy is 680°C - 700°C, for bronzes and brasses is 1000 - 1200°C, for magnesium alloy is 700 - 800°C, for steel is 1520 - 1620°C and for cast iron is 1300 - 1450°C.
Material and Methods
Material used
The brake disc of 260mm diameter and 15mm thickness and the impeller of 146mm diameter and 5mm thickness respectively were cast with the following materials: pattern material, mould material, aluminium scrap, and furnace.
Pattern material
A wooden pattern was produced from the developed pattern drawing. A hard wood (mahogany) was use for the production of the impeller pattern. The pattern for the impeller was produced from the wood of initial dimension 200mm ? 150mm, putting into consideration the spacing of the characters, depth of each shape using the specified dimension on the patter drawing.
In the case of the blade disc, two plywoods, each 2cm thick of 32cm?32cm were glued and nailed together. A divider opened to a radius of 14cm was used to inscribe a circle in its centre, found by drawing diagonals from the plywood edges. Hardwood of 16cm?16cm?3cm was glued and nailed to the centre of the plywood, and a divider opened to 6.7cm was used to inscribe a circle for the bore to be drilled. Putty was used to fill all chipped imperfections and also in filleting the pattern’s sharp and rough edges, after it was filled to a smooth finish. Two coats of wood varnish were applied.?
Mould material
The mould materials used is the green sand mould and they include the following: silica sand, bentonite, and water. The chemical compound silicon dioxide, also known as silica, is an oxide of silicon with a chemical formula of SiO2 and has been known for its hardness since antiquity. Silica is most commonly found in nature as sand or quartz, as well as in the cell walls of diatoms. It is a principal component of most types of glass and substances such as concrete. Silica is the most abundant mineral in the earth's crust. Green sand moulding which was used is a situation where the moulding sand remained moist until the metal is poured into it. Silica sand was sieved to obtain fine grain sized sand and to remove other foreign bodies in the sand. A specific quantity of the sand was fetched and bentonite was added as binder and mixed thoroughly with the sand. Water was then added to the already mixed mixtures, which were then thoroughly mixed together by hand to make ready for mould.
Aluminium
Aluminium is a silvery white and ductile member of the boron group of chemical elements. It has the symbol Al; its atomic number is 13. It is not soluble in water under normal circumstances. Aluminium is the most abundant metal in the Earth's crust, and the third most abundant element therein, after oxygen and silicon. It makes up about 8% by weight of the Earth’s solid surface. Aluminium is too reactive chemically to occur in nature as the free metal. Instead, it is found combined in over 270 different minerals. The chief source of aluminium is bauxite ore.
Aluminium is remarkable for its ability to resist corrosion due to the phenomenon of passivation and its low density. Structural components made from aluminium and its alloys are vital to the aerospace industry and very important in other areas of transportation and building. Its reactive nature makes it useful as a catalyst or additive in chemical mixtures, including being used in ammonium nitrate explosives to enhance blast power.
Furnace
The furnace used for the melting of the aluminium scrap is the Morgan furnace, which makes use of diesel oil for burning.
Methods
Aluminium was melted in a crucible furnace, an oldest and simple type of melting equipment. It was poured after melting into the mould earlier prepared for the two patterns. No melting treatment was carried out prior to pouring operation. After the pouring and solidification is completed, the two patterns were removed, cleaned and inspected for possible defects.
Calculations
Impeller
Actual impeller diameter = 146mm, Shrinkage allowance used = 13mm/m, Machining allowance used 6mm.
Diameter of pattern due to shrinkage = Impeller Diameter + (Shrinkage Allowance) (Impeller Diameter) = 146+ (13?146/1000) = 146 + 1898/1000 = 146 + 1.898 = 147.898mm.
Therefore, adding machining allowance, this diameter of the pattern becomes
Diameter of the pattern = Machine allowance + Diameter of pattern due to shrinkage
= 6 + 147.898 = 153.898mm.
Brake disc
Actual blade disc diameter = 260mm, Shrinkage allowance used = 13mm/m, Machining allowance used = 6mm.
Diameter of the pattern due to shrinkage = Disc diameter + (Shrinkage allowance) (Brake disc
Diameter) = 260 + (13?260/1000) = 260 +3380/1000 = 260 + 3.38 = 263.38mm
Adding machining allowance, thus diameter of the pattern becomes
Diameter of the pattern = Machine allowance + Diameter of pattern due to shrinkage
= 263.38+6 = 269.38 = 269 mm
Casting Yields - The casting can be evaluated using casting yield, which determines the percentage use of metal in casting.
Casting Yield = WC/(WC + WG+WR)
Where WC = Casting Weight, WG = Gating Weight, WR = Riser Weight.
For the impeller,
Casting Weight, WC = 0.418Kg.
Weight of gating and riser, WG + WR = 0.15Kg.
Casting Yield ?? = 0.418/(0.418+0.15) = 0.418/0.568 = 0.7359 ? 100 = 73.59%
For the brake disc,
Casting Weight = WC = 2.0Kg
Weight of gating and riser = 0.35Kg
Casting Yield ?? = 2.0/(2.0+0.35) = 2/2.35 = 0.851 ? 100= 85.1%
Result and Discussion
A casting free of defects can be obtained if the pattern is properly designed, the mould properly prepared and the melting and pouring processes correctly carried out. In this work, due to unavoidable errors, some defects were noticed on the cast impeller blade and the brake disc. Both the external and the internal surface of the casting were relatively rough compared with the degree of smoothness expected of the brake disc. However, the external surface was machined to obtain a higher degree of smoothness while for internal surface; there was little or nothing which could be done to improve the smoothness. In the case of cast impeller, it was only the edge that was rough. A file was use used in filling the edges in order to smoothen it.
Conclusion
In the course of this work, effort was made to produce locally the impeller and brake disc from aluminum scraps and to ensure that they conform to specification required. The green sand mould prepared gave the rough surface of the two castings, this may be due to the fact that no additives were added or proper percentage composition was not used. The defects found on the two casting may be due to entrapped air and poor surface finish of the mould, though the defects are minor. The cast yield for the impeller and the brake disc indicates that sound casting was achieved.
?
References
[1] Mikhailow A. M., Metal Casting, First edition Mir Publishers, Moscow, 1989.
[2] Howard E. B., Timothy L. G., Metal Handbook, Desk edition, America Society for Metal (ASM) USA, 1992.
收藏