液壓式可變配氣系統(tǒng)設(shè)計(jì)
液壓式可變配氣系統(tǒng)設(shè)計(jì),液壓式可變配氣系統(tǒng)設(shè)計(jì),液壓式,可變,系統(tǒng),設(shè)計(jì)
編號(hào)
無錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
相關(guān)資料
題目: M3400調(diào)溫器工藝規(guī)程設(shè)計(jì)
和系列夾具設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化專業(yè)
學(xué) 號(hào): 0923809
學(xué)生姓名: 房 小 佩
指導(dǎo)教師:張大駿(職稱:高級(jí)工程師 )
(職稱: )
2013年5月25日
目 錄
一、畢業(yè)設(shè)計(jì)(論文)開題報(bào)告
二、畢業(yè)設(shè)計(jì)(論文)外文資料翻譯及原文
三、學(xué)生“畢業(yè)論文(論文)計(jì)劃、進(jìn)度、檢查及落實(shí)表”
四、實(shí)習(xí)鑒定表
無錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)
開題報(bào)告
題目: M3400調(diào)溫器工藝規(guī)程設(shè)計(jì)
和系列夾具設(shè)計(jì)
信機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
學(xué) 號(hào): 0923809
學(xué)生姓名: 房 小 佩
指導(dǎo)教師:張大駿(職稱:高級(jí)工程師 )
(職稱 )
2012年11月26日
課題來源
本課題是廣西玉林柴油機(jī)廠委托無錫市宏業(yè)機(jī)械配件廠加工的柴油機(jī)零件,此種發(fā)動(dòng)機(jī)在載重汽車及客車上廣泛使用。
科學(xué)依據(jù)(包括課題的科學(xué)意義;國(guó)內(nèi)外研究概況、水平和發(fā)展趨勢(shì);應(yīng)用前景等)
1、工藝是機(jī)械產(chǎn)品設(shè)計(jì)制造過程中十分重要的一個(gè)環(huán)節(jié),其水平與質(zhì)量直接影響到產(chǎn)品的最終制造質(zhì)量及成本運(yùn)行。
2、加工技術(shù)正向高度信息化、自動(dòng)化、智能化的方向發(fā)展,各種現(xiàn)代的加工方法也不斷地創(chuàng)造和完善,如快速成型技術(shù)、激光加工、電加工和射流加工等已相當(dāng)廣泛的應(yīng)用到加工中去,而這些使工藝設(shè)計(jì)也帶來巨大的進(jìn)步。
3、作為機(jī)械專業(yè)的本科畢業(yè)生采用此類課題可以培養(yǎng)學(xué)生認(rèn)識(shí)機(jī)械加工生產(chǎn)準(zhǔn)備工作是怎樣一個(gè)過程,可以受到理論與實(shí)踐相結(jié)合的鍛煉。
研究?jī)?nèi)容
1、機(jī)械加工工藝規(guī)程的編制,結(jié)合具體工廠的條件和發(fā)展前景進(jìn)行考慮。
2、同樣結(jié)合具體工廠的現(xiàn)有生產(chǎn)條件和發(fā)展前景設(shè)計(jì)專用(不少于三副)
擬采取的研究方法、技術(shù)路線、實(shí)驗(yàn)方案及可行性分析
采用組織分析零件的具體結(jié)構(gòu),加工精度要求,表面粗糙度要求,制造出初步的加工方案。然后組織學(xué)生下廠參觀,實(shí)習(xí),實(shí)地了解工廠現(xiàn)有的生產(chǎn)條件,發(fā)展展望及具體的生產(chǎn)水平。在此基礎(chǔ)上編制工藝規(guī)程,填寫工藝文件,設(shè)計(jì)專用夾具。待初步完成后再回工廠征集意見,加以改進(jìn),定稿。
研究計(jì)劃及預(yù)期成果
研究計(jì)劃:
2012年11月12日-2013年1月20日:按照任務(wù)書要求查閱論文相關(guān)參考資料,填寫畢業(yè)設(shè)計(jì)開題報(bào)告書。
2013年1月21日-2013年3月1日:填寫畢業(yè)實(shí)習(xí)報(bào)告。
2013年3月2日-2013年3月14日:按照要求修改畢業(yè)設(shè)計(jì)開題報(bào)告。
2013年3月15日-2013年3月29日:學(xué)習(xí)并翻譯一篇與畢業(yè)設(shè)計(jì)相關(guān)的英文材料。
2013年3月30日-2013年4月19日:工藝規(guī)程設(shè)計(jì)、工序卡和工藝卡。
2013年4月20日-2013年5月10日:夾具設(shè)計(jì)、裝配圖和說明書。
2013年5月11日-2013年5月25日:畢業(yè)論文撰寫和修改工作。
預(yù)期成果:
工藝規(guī)程:工藝卡片,工序卡片,夾具總圖及主要零件圖,設(shè)計(jì)說明書
特色或創(chuàng)新之處
工藝規(guī)程可以適用于一般中小型工廠的普通通用機(jī)床,也能改進(jìn)后用于專用機(jī)床,或加工中心,適用于范圍較廣。
已具備的條件和尚需解決的問題
現(xiàn)有廣西玉柴機(jī)器的生產(chǎn)圖樣,委托加工工廠的現(xiàn)有生產(chǎn)條件及技術(shù)狀況,特別是已有的生產(chǎn)經(jīng)驗(yàn)。
目前缺少設(shè)計(jì)手冊(cè)、資料等,對(duì)檢測(cè)條件也不夠清楚其它資料也缺乏。
指導(dǎo)教師意見
指導(dǎo)教師簽名:
2012年11月26日
教研室(學(xué)科組、研究所)意見
教研室主任簽名:
年 月 日
系意見
主管領(lǐng)導(dǎo)簽名:
年 月 日
無錫太湖學(xué)院
畢業(yè)設(shè)計(jì)(論文)外文資料翻譯
信機(jī) 系 機(jī)械工程及自動(dòng)化 專業(yè)
院 (系): 信 機(jī) 系
專 業(yè): 機(jī)械工程及自動(dòng)化
班 級(jí): 機(jī)械97班
姓 名: 房 小 佩
學(xué) 號(hào): 0923809
外文出處: 機(jī)械專業(yè)英語(yǔ)教程
附 件: 1.譯文;2.原文;3.評(píng)分表
2013年5月25日
英文原文
Internal-Combustion Engine
With fuel combustion in cylinder, the fuel chemical energy into mechanical energy, to gain power engine is referred to as the internal combustion engine. Four principal types of internal-combustion engines are in general use: the Otto-cycle engine, the diesel engine, the rotary engine, and the gas turbine. For the various types of engines employing the principle of jet propulsion, see Jet Propulsion; Rocket. The Otto-cycle engine, named after its inventor, the German technician Nikolas August Otto, is the familiar gasoline engine used in automobiles and airplanes; the diesel engine, named after the French-born German engineer Rudolf Christian Karl Diesel, operates on a different principle and usually uses oil as a fuel. It is employed in electric-generating and marine-power plants, in trucks and buses, and in some automobiles. Both Otto-cycle and diesel engines are manufactured in two-stroke and four-stroke cycle models.
The essential parts of Otto-cycle and diesel engines are the same. The combustion chamber consists of a cylinder, usually fixed, that is closed at one end and in which a close-fitting piston slides. The in-and-out motion of the piston varies the volume of the chamber between the inner face of the piston and the closed end of the cylinder. The outer face of the piston is attached to a crankshaft by a connecting rod. The crankshaft transforms the reciprocating motion of the piston into rotary motion. In multicylindered engines the crankshaft has one offset portion, called a crankpin, for each connecting rod, so that the power from each cylinder is applied to the crankshaft at the appropriate point in its rotation. Crankshafts have heavy flywheels and counterweights, which by their inertia minimize irregularity in the motion of the shaft. An engine may have from 1 to as many as 24 cylinders.
The fuel supply system of an internal-combustion engine consists of a tank, a fuel pump, and a device for vaporizing or atomizing the liquid fuel. In Otto-cycle engines this device is either a carburetor or, more recently, a fuel-injection system. In most engines with a carburetor, vaporized fuel is conveyed to the cylinders through a branched pipe called the intake manifold and, in many engines, a similar exhaust manifold is provided to carry off the gases produced by combustion. The fuel is admitted to each cylinder and the waste gases exhausted through mechanically operated poppet valves or sleeve valves. The valves are normally held closed by the pressure of springs and are opened at the proper time during the operating cycle by cams on a rotating camshaft that is geared to the crankshaft. By the 1980s more sophisticated fuel-injection systems, also used in diesel engines, had largely replaced this traditional method of supplying the proper mix of air and fuel. In engines with fuel injection, a mechanically or electronically controlled monitoring system injects the appropriate amount of gas directly into the cylinder or inlet valve at the appropriate time. The gas vaporizes as it enters the cylinder. This system is more fuel efficient than the carburetor and produces less pollution.
In all engines some means of igniting the fuel in the cylinder must be provided. For example, the ignition system of Otto-cycle engines described below consists of a source of low-voltage, direct-current electricity that is connected to the primary of a transformer called an ignition coil. The current is interrupted many times a second by an automatic switch called the timer. The pulsations of the current in the primary induce a pulsating, high-voltage current in the secondary. The high-voltage current is led to each cylinder in turn by a rotary switch called the distributor. The actual ignition device is the spark plug, an insulated conductor set in the wall or top of each cylinder. At the inner end of the spark plug is a small gap between two wires. The high-voltage current arcs across this gap, yielding the spark that ignites the fuel mixture in the cylinder.
Because of the heat of combustion, all engines must be equipped with some type of cooling system. Some aircraft and automobile engines, small stationary engines, and outboard motors for boats are cooled by air. In this system the outside surfaces of the cylinder are shaped in a series of radiating fins with a large area of metal to radiate heat from the cylinder. Other engines are water-cooled and have their cylinders enclosed in an external water jacket. In automobiles, water is circulated through the jacket by means of a water pump and cooled by passing through the finned coils of a radiator. Some automobile engines are also air-cooled, and in marine engines sea water is used for cooling.
Unlike steam engines and turbines, internal-combustion engines develop no torque when starting, and therefore provision must be made for turning the crankshaft so that the cycle of operation can begin. Automobile engines are normally started by means of an electric motor or starter that is geared to the crankshaft with a clutch that automatically disengages the motor after the engine has started. Small engines are sometimes started manually by turning the crankshaft with a crank or by pulling a rope wound several times around the flywheel. Methods of starting large engines include the inertia starter, which consists of a flywheel that is rotated by hand or by means of an electric motor until its kinetic energy is sufficient to turn the crankshaft, and the explosive starter, which employs the explosion of a blank cartridge to drive a turbine wheel that is coupled to the engine. The inertia and explosive starters are chiefly used to start airplane engines.
The ordinary Otto-cycle engine is a four-stroke engine; that is, in a complete power cycle, its pistons make four strokes, two toward the head (closed head) of the cylinder and two away from the head. During the first stroke of the cycle, the piston moves away from the cylinder head while simultaneously the intake valve is opened. The motion of the piston during this stroke sucks a quantity of a fuel and air mixture into the combustion chamber. During the next stroke, the piston moves toward the cylinder head and compresses the fuel mixture in the combustion chamber. At the moment when the piston reaches the end of this stroke and the volume of the combustion chamber is at a minimum, the fuel mixture is ignited by the spark plug and burns, expanding and exerting a pressure on the piston, which is then driven away from the cylinder head in the third stroke. During the final stroke, the exhaust valve is opened and the piston moves toward the cylinder head, driving the exhaust gases out of the combustion chamber and leaving the cylinder ready to repeat the cycle.
The efficiency of a modern Otto-cycle engine is limited by a number of factors, including losses by cooling and by friction. In general, the efficiency of such engines is determined by the compression ratio of the engine. The compression ratio (the ratio between the maximum and minimum volumes of the combustion chamber) is usually about 8 to 1 or 10 to 1 in most modern Otto-cycle engines. Higher compression ratios, up to about 15 to 1, with a resulting increase of efficiency, are possible with the use of high-octane antiknock fuels. The efficiencies of good modern Otto-cycle engines range between 20 and 25 percent—in other words, only this percentage of the heat energy of the fuel is transformed into mechanical energy.
Theoretically, the diesel cycle differs from the Otto cycle in that combustion takes place at constant volume rather than at constant pressure. Most diesels are also four-stroke engines but they operate differently than the four-stroke Otto-cycle engines. The first, or suction, stroke draws air, but no fuel, into the combustion chamber through an intake valve. On the second, or compression, stroke the air is compressed to a small fraction of its former volume and is heated to approximately 440°C (approximately 820°F) by this compression. At the end of the compression stroke, vaporized fuel is injected into the combustion chamber and burns instantly because of the high temperature of the air in the chamber. Some diesels have auxiliary electrical ignition systems to ignite the fuel when the engine starts and until it warms up. This combustion drives the piston back on the third, or power, stroke of the cycle. The fourth stroke, as in the Otto-cycle engine, is an exhaust stroke.
The efficiency of the diesel engine, which is in general governed by the same factors that control the efficiency of Otto-cycle engines, is inherently greater than that of any Otto-cycle engine and in actual engines today is slightly more than 40 percent. Diesels are, in general, slow-speed engines with crankshaft speeds of 100 to 750 revolutions per minute (rpm) as compared to 2500 to 5000 rpm for typical Otto-cycle engines. Some types of diesel, however, have speeds up to 2000 rpm. Because diesels use compression ratios of 14 or more to 1, they are generally more heavily built than Otto-cycle engines, but this disadvantage is counterbalanced by their greater efficiency and the fact that they can be operated on less expensive fuel oils.
By suitable design it is possible to operate an Otto-cycle or diesel as a two-stroke or two-cycle engine with a power stroke every other stroke of the piston instead of once every four strokes. The power of a two-stroke engine is usually double that of a four-stroke engine of comparable size.The general principle of the two-stroke engine is to shorten the periods in which fuel is introduced to the combustion chamber and in which the spent gases are exhausted to a small fraction of the duration of a stroke instead of allowing each of these operations to occupy a full stroke. In the simplest type of two-stroke engine, the poppet valves are replaced by sleeve valves or ports (openings in the cylinder wall that are uncovered by the piston at the end of its outward travel). In the two-stroke cycle, the fuel mixture or air is introduced through the intake port when the piston is fully withdrawn from the cylinder. The compression stroke follows, and the charge is ignited when the piston reaches the end of this stroke. The piston then moves outward on the power stroke, uncovering the exhaust port and permitting the gases to escape from the combustion chamber.
In the 1950s the German engineer Felix Winkle developed an internal-combustion engine of a radically new design, in which the piston and cylinder were replaced by a three-cornered rotor turning in a roughly oval chamber. The fuel-air mixture is drawn in through an intake port and trapped between one face of the turning rotor and the wall of the oval chamber. The turning of the rotor compresses the mixture, which is ignited by a spark plug. The exhaust gases are then expelled through an exhaust port through the action of the turning rotor. The cycle takes place alternately at each face of the rotor, giving three power strokes for each turn of the rotor. Because of the Winkle engine's compact size and consequent lesser weight as compared with the piston engine, it appeared to be an important option for automobiles. In addition, its mechanical simplicity provided low manufacturing costs, its cooling requirements were low and its low center of gravity made it safer to drive. A line of Winkle-engine cars was produced in Japan in the early 1970s, and several United States automobile manufacturers researched the idea as well. However, production of the Winkle engine was discontinued as a result of its poor fuel economy and its high pollutant emissions. Mazda, a Japanese car manufacturer, has continued to design and innovate the rotary engine, improving performance and fuel efficiency.
A modification of the conventional spark-ignition piston engine, the stratified charge engine is designed to reduce emissions without the need for an exhaust-gas recirculation system or catalytic converter. Its key feature is a dual combustion chamber for each cylinder, with a prechamber that receives a rich fuel-air mixture while the main chamber is charged with a very lean mixture. The spark ignites the rich mixture that in turn ignites the lean main mixture. The resulting peak temperature is low enough to inhibit the formation of nitrogen oxides, and the mean temperature is sufficiently high to limit emissions of carbon monoxide and hydrocarbon.
內(nèi) 燃 機(jī)
通過燃料在氣缸中燃燒,使燃油的化學(xué)能轉(zhuǎn)化為機(jī)械能,從而獲得動(dòng)力的發(fā)動(dòng)機(jī)都稱為內(nèi)燃機(jī)。最常見的內(nèi)燃機(jī)有四種:奧托循環(huán)式發(fā)動(dòng)機(jī)、柴油機(jī)、轉(zhuǎn)子發(fā)動(dòng)機(jī)和燃?xì)鈾C(jī)。根據(jù)這四種發(fā)動(dòng)機(jī)的優(yōu)點(diǎn),把它們應(yīng)用于不同的工況。奧托循環(huán)式發(fā)動(dòng)機(jī),是根據(jù)其發(fā)明者,德國(guó)機(jī)械師尼古拉斯.奧古斯特.奧托的名字來命名的。是飛機(jī)上很常見的一種發(fā)動(dòng)機(jī);而柴油機(jī)是由法籍德國(guó)工程師Rudolf Christian Karl Diesel命名的。它是一種以柴油作為燃料的先進(jìn)的發(fā)動(dòng)機(jī)。普遍用于電子控機(jī)械、戰(zhàn)斗機(jī)、公共汽車、貨車以及一些小車上。奧托式發(fā)動(dòng)機(jī)和柴油機(jī)的工作方式都是二沖程或者四沖程。
奧托式發(fā)動(dòng)機(jī)和柴油機(jī)的基本構(gòu)造都是一樣的。壓縮燃燒室是由一個(gè)一端是缸蓋另一端是活塞兩者之間的空間所形成?;钊纳舷逻\(yùn)動(dòng)使得氣缸與活塞間的空間發(fā)生大小變化,從而改變壓縮空間的大小?;钊c曲軸之間通過連桿相互連接。曲軸將活塞的運(yùn)動(dòng)轉(zhuǎn)化成旋轉(zhuǎn)式運(yùn)動(dòng)。多氣缸式發(fā)動(dòng)機(jī)的曲軸,在每一個(gè)氣缸處都會(huì)多一個(gè)稱為曲拐的結(jié)構(gòu)部分。這樣每個(gè)氣缸的動(dòng)力才能很好的傳遞給曲軸,使曲軸的轉(zhuǎn)動(dòng)平穩(wěn)。曲軸上接有飛輪并有平衡塊。這樣能夠使曲軸運(yùn)動(dòng)的慣性最小化,達(dá)到平衡的目的。不同的發(fā)動(dòng)機(jī)會(huì)有一個(gè)到二十四個(gè)不等的氣缸。
內(nèi)燃機(jī)的燃料供給系統(tǒng)由油箱、油泵、和分油管以及使液體燃料霧化的機(jī)構(gòu)組成。在奧托式發(fā)動(dòng)機(jī)中,并不是靠化油器來進(jìn)行燃油霧化的,而是利用燃油的直接噴入,一直到現(xiàn)在都是如此。在大多數(shù)發(fā)動(dòng)機(jī)上,燃料都是通過化油器霧化后通過壓氣機(jī)進(jìn)入進(jìn)氣管道。在部分發(fā)動(dòng)機(jī)的排氣系統(tǒng)中,也會(huì)用到類似的裝置來通過利用廢氣的能量對(duì)進(jìn)氣充量進(jìn)行壓縮。燃料平均分配給各個(gè)汽缸,而廢氣則通過排氣門排出。進(jìn)排氣門的開閉都是通過凸輪軸的轉(zhuǎn)動(dòng)從而牽動(dòng)氣門彈簧作用到挺桿,在正確的時(shí)間是氣門開閉。在上世紀(jì)80年代,缸內(nèi)直噴技術(shù)開始用于內(nèi)燃機(jī)領(lǐng)域,從很大程度上代替了傳統(tǒng)的燃油與空氣相混合的技術(shù)。在有直噴裝置的發(fā)動(dòng)機(jī)上,燃料會(huì)通過噴射系統(tǒng)在正確的時(shí)刻噴入汽缸或者進(jìn)氣管。這樣燃料就會(huì)在汽缸里混合,這比化油器混合更充分,污染更小。
所有的發(fā)動(dòng)機(jī)上,火花塞的位置都必須適宜。比如奧托式發(fā)動(dòng)機(jī)的點(diǎn)火系統(tǒng)包括低壓電源,即具有變壓性質(zhì)的初級(jí)線圈,從而導(dǎo)出直流電。電流會(huì)被一個(gè)機(jī)械式的定時(shí)調(diào)節(jié)器在一秒鐘內(nèi)方向發(fā)生多次變化。初級(jí)線圈中電流的擾動(dòng)會(huì)產(chǎn)生脈沖,從而會(huì)在次級(jí)線圈中產(chǎn)生高壓電流。這個(gè)高壓電流會(huì)被分電器分配到各個(gè)汽缸間,一個(gè)安裝在汽缸頂部被叫做火花塞的零件。在火花塞末端的兩極間有一個(gè)間隙,高壓電流會(huì)擊穿這個(gè)點(diǎn)火間隙,從而點(diǎn)燃汽缸中的混合氣體。
由于燃燒室的溫度太高,所有的發(fā)動(dòng)機(jī)都必須有相應(yīng)的冷卻系統(tǒng)。一些飛機(jī)、汽車、和船只上的舷外發(fā)動(dòng)機(jī)采用風(fēng)冷。這些采用風(fēng)冷的發(fā)動(dòng)機(jī)都必須有很多散熱片,有較大的散熱面積,從而可以很好的帶走汽缸的熱量。除此之外的還有水冷系統(tǒng),它是在發(fā)動(dòng)機(jī)的汽缸中設(shè)有水套來達(dá)到冷卻的目的。在汽車上,冷卻液借助水泵的壓力在水套中流動(dòng),帶走熱量。還有一些汽車是利用風(fēng)冷,海上船只則是用海水作為冷卻的介質(zhì)。
與蒸汽機(jī)和渦輪機(jī)不同,內(nèi)燃機(jī)在發(fā)動(dòng)時(shí)并不會(huì)產(chǎn)生轉(zhuǎn)矩,并且扭矩的輸出必須要靠曲軸的轉(zhuǎn)動(dòng)才行。汽車發(fā)動(dòng)機(jī)的啟動(dòng)要靠一個(gè)與曲軸箱嚙合的摩擦片,通過摩擦片的分離才能向外輸出力矩。小型的發(fā)動(dòng)機(jī)有時(shí)需要手動(dòng)的進(jìn)行多次使離合器的松脫才能發(fā)動(dòng)。有時(shí)候在大型發(fā)動(dòng)機(jī)上,會(huì)有慣性啟動(dòng)裝置,或者是借助手工輸入力矩直到驅(qū)動(dòng)能量能使曲軸轉(zhuǎn)動(dòng)。一邊帶動(dòng)增壓器工作,來增加發(fā)動(dòng)機(jī)的功率。一般,慣性啟動(dòng)裝置和爆炸性質(zhì)的裝置都是在飛機(jī)上采用的。
普通的奧托式發(fā)動(dòng)機(jī)都是四沖程,也就是說,每一個(gè)工作循環(huán)中,活塞會(huì)有四個(gè)行程,兩個(gè)離缸蓋最近,另外兩個(gè)離缸蓋距離最遠(yuǎn)。在第一個(gè)行程時(shí),活塞遠(yuǎn)離缸蓋,同時(shí)進(jìn)氣門打開?;钊谶@個(gè)過程中的運(yùn)動(dòng),使得燃料和空氣進(jìn)入燃燒室混合。接著的行程,就是將混合后的氣體壓縮到燃燒室里。當(dāng)活塞上行到最高點(diǎn)時(shí),燃燒室的體積達(dá)到最小,火花塞就會(huì)點(diǎn)燃混合氣體,燃燒產(chǎn)生的膨脹壓力會(huì)作用在活塞上,使活塞遠(yuǎn)離缸蓋,這就是第三個(gè)行程。在最后一個(gè)行程中,排氣門打開,活塞的上行會(huì)對(duì)燃燒后的氣體進(jìn)行擠壓,將廢氣排出燃燒室,做好下一循環(huán)的準(zhǔn)備。
發(fā)動(dòng)機(jī)的效率會(huì)受到很多因素的限制,例如冷卻損失以及摩擦損失。通常,發(fā)動(dòng)機(jī)的效率是由其壓縮比決定的?,F(xiàn)在發(fā)動(dòng)機(jī)的壓縮比一般在8---10之間。更高的壓縮比可以達(dá)到15,效率的提高也可以通過采用辛烷值較高的燃料來實(shí)現(xiàn)?,F(xiàn)在,好的發(fā)動(dòng)機(jī)的效率在20%--25%,也就是說,只有這部分能量真正用于產(chǎn)生機(jī)械能量。
理論上,柴油周期相比奧托循環(huán)的區(qū)別在于,它的壓縮過程是等容、等壓的。大多數(shù)柴油機(jī)都是采用四沖程,但卻與奧托式四沖程不一樣。首先,在進(jìn)氣時(shí),活塞向下運(yùn)動(dòng),并通過進(jìn)氣門將空氣吸進(jìn)燃燒室。其次,在壓縮時(shí),活塞將空氣壓縮到比先前小很多倍的體積,并在這個(gè)過程中使空氣的溫度達(dá)到440℃(等同于華氏820℉)。在壓縮結(jié)束的時(shí)候,汽化的燃油被噴入汽缸,由于汽缸中的氣體高溫作用而立即燃燒。一些發(fā)動(dòng)機(jī)上設(shè)有電子噴射輔助系統(tǒng),在發(fā)動(dòng)機(jī)發(fā)動(dòng)直到加熱完成期間進(jìn)行燃油噴射。這樣的壓縮過程為活塞進(jìn)行第三個(gè)沖程提供強(qiáng)大的動(dòng)力。第四個(gè)沖程跟奧托式四沖程發(fā)動(dòng)機(jī)一樣,都是排氣過程。
柴油機(jī)的效率,跟一般的奧托式發(fā)動(dòng)機(jī)是受同樣的因素所影響的,但是稍好于奧托式發(fā)動(dòng)機(jī)。事實(shí)上,現(xiàn)在發(fā)動(dòng)機(jī)中,基本的效率都不會(huì)超過40%。事實(shí)上,柴油機(jī)的曲軸轉(zhuǎn)速的100—750轉(zhuǎn)每分鐘,這等同于奧托式發(fā)動(dòng)機(jī)的2500—5000轉(zhuǎn)每分鐘。但是也有一些柴油機(jī)的轉(zhuǎn)速達(dá)到了2000轉(zhuǎn)每分鐘。因?yàn)椴裼蜋C(jī)的壓縮比高達(dá)14或者15,這使得它們的體積較奧托式大,這個(gè)缺點(diǎn)正體現(xiàn)出柴油機(jī)的高效率和高燃油經(jīng)濟(jì)特性。
好的設(shè)計(jì)一般采用奧托式循環(huán)或者二沖程的方式來代替四沖程的方式。因?yàn)橥瑯芋w積的發(fā)動(dòng)機(jī),二沖程的效率是四沖程的兩倍。二沖程的優(yōu)點(diǎn)在于,縮短了燃料壓縮的時(shí)間,并且減少了燃料的浪費(fèi)以及用半個(gè)沖程完成了四沖程發(fā)動(dòng)機(jī)的一個(gè)壓縮沖程。在最簡(jiǎn)單的二沖程發(fā)動(dòng)機(jī)上,排氣門被廢氣管代替了。在二沖程循環(huán)中,燃料和空氣的混合氣體在活塞在汽缸中下行時(shí)進(jìn)入曲軸箱。緊接著,燃料開始?jí)嚎s,并在活塞到達(dá)上至點(diǎn)是點(diǎn)燃。這是活塞在燃?xì)鈮毫Φ淖饔孟孪滦校瑥U氣就會(huì)從排氣口由汽缸內(nèi)向外排出去。
上世紀(jì)50年代,德國(guó)機(jī)械師菲利克斯.王科爾開發(fā)了一種新型的發(fā)動(dòng)機(jī)。在這種發(fā)動(dòng)機(jī)上,活塞和汽缸被一個(gè)在橢圓形燃燒室里旋轉(zhuǎn)的三角轉(zhuǎn)子所代替?;旌先剂贤ㄟ^進(jìn)氣口進(jìn)入,然后分流到有轉(zhuǎn)子表面與端面形成的燃燒室里?;旌蠚怏w通過轉(zhuǎn)子的旋轉(zhuǎn)得到壓縮,最后被火花塞點(diǎn)燃。然后,廢氣就會(huì)隨著轉(zhuǎn)子的運(yùn)動(dòng)從排氣口排出。循環(huán)過程中,轉(zhuǎn)子的旋轉(zhuǎn)一周,會(huì)出有三個(gè)沖程,而且在轉(zhuǎn)子的正反兩面產(chǎn)生壓力。正因?yàn)檗D(zhuǎn)子發(fā)動(dòng)機(jī)與柴油機(jī)相比,結(jié)構(gòu)緊湊、質(zhì)量輕,因而在汽車發(fā)動(dòng)機(jī)中作用很大。另外,它簡(jiǎn)單的結(jié)構(gòu)使得生產(chǎn)成本低,冷卻系統(tǒng)質(zhì)量輕,另外它的重心低,使得它的安全性得到了提高。在上世紀(jì)70年代初期,一條轉(zhuǎn)子發(fā)動(dòng)機(jī)的生產(chǎn)線在日本落成。很多美國(guó)的汽車制造商都很看好這個(gè)項(xiàng)目。但是,由于轉(zhuǎn)子發(fā)動(dòng)機(jī)的低燃料經(jīng)濟(jì)性和很高的污染性,最后沒能得到繼續(xù)的發(fā)展。日本的汽車制造商—馬自達(dá),繼續(xù)了改善轉(zhuǎn)子發(fā)動(dòng)機(jī)燃油經(jīng)濟(jì)性的設(shè)計(jì)和研發(fā)。
發(fā)動(dòng)機(jī)采用火花點(diǎn)火的改進(jìn)方式,進(jìn)行分層點(diǎn)火稀薄燃燒,幫助沒有使用廢氣再循環(huán)和催化轉(zhuǎn)換器的發(fā)動(dòng)機(jī)減小排放量。它的特點(diǎn)在于在一個(gè)汽缸中有兩個(gè)燃燒室,當(dāng)沖入的混合氣體過多是,備用燃燒室就會(huì)將多余的混合氣體儲(chǔ)存起來。火花塞會(huì)先點(diǎn)燃多余部分的混合氣,再將另一部分點(diǎn)燃。這樣最高火焰溫度就會(huì)比較合適,從而很好的限制Knox化合物的生成量以及CO和HC的排放量。
收藏