流體和剛體轉(zhuǎn)動(dòng)習(xí)題課 [自動(dòng)保存的
《流體和剛體轉(zhuǎn)動(dòng)習(xí)題課 [自動(dòng)保存的》由會(huì)員分享,可在線閱讀,更多相關(guān)《流體和剛體轉(zhuǎn)動(dòng)習(xí)題課 [自動(dòng)保存的(57頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 1 物 質(zhì) 存 在 的 三 種 狀 態(tài) 固 、 液 、 氣液 體 和 氣 體 的 各 個(gè) 部 分 間 很 容 易 發(fā) 生 相 對(duì)運(yùn) 動(dòng) ,液 體 和 氣 體 的 這 種 性 質(zhì) 稱 流 動(dòng) 性具 有 流 動(dòng) 性 的 物 體 流 體 ( 液 體 和 氣 體 )流 動(dòng) 性 是 流 體 區(qū) 別 于 固 體 的 重 要 特 征 . 流 體 力 學(xué) 是 研 究 流 體 的 運(yùn) 動(dòng) 規(guī) 律 及 流 體 與相 鄰 固 體 之 間 相 互 作 用 的 學(xué) 科 . 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 2 一 .實(shí) 際 流 體 的 性 質(zhì)1.可 壓 縮
2、性 2.粘 滯 性 :相 鄰 流 層 間 存 在 沿 界 面 的 一 對(duì) 切 向 摩 擦 力 ,稱 為 濕 摩 擦 力 或 粘 滯 力 , 流 體 具 有 的 這 種性 質(zhì) 叫 粘 滯 性 。二 .理 想 流 體 : 絕 對(duì) 不 可 壓 縮 ,完 全 沒(méi) 有 粘 滯性 的 流 體 . 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 3 理 想 流 體 的 穩(wěn) 定 流 動(dòng)一 般 情 況 下 , 流 體 流 動(dòng) 時(shí) ,空 間 各 點(diǎn) 的 流 速 隨 位 置 和時(shí) 間 的 不 同 而 不 同 , 即 ),( tzyxvv則 稱 該 流 動(dòng) 為 穩(wěn) 定 流 動(dòng)v(x,y,z)v 若 流 體 質(zhì) 點(diǎn) 通
3、 過(guò) 空 間 任 一 固 定 點(diǎn) 的 流 速 不隨 時(shí) 間 變 化 , 即 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 4 三 、 連 續(xù) 性 方 程如 圖 , 對(duì) 于 一 段 細(xì)流 管 , 任 一 橫 截 面上 各 點(diǎn) 物 理 量 可 看作 是 均 勻 的 。dt 時(shí) 間 內(nèi) 通 過(guò) S1 進(jìn) 入 流 管 段 的 流 體 質(zhì) 量 為 ,tvSm dd 1111 同 一 時(shí) 間 內(nèi) 通 過(guò) S2流 出 流 管 段 的 流 體 質(zhì) 量 為 ,tvSm dd 2222 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 5 1 2穩(wěn) 定 流 動(dòng) 則 有 21 mm dd 即 tvStvS dd 2
4、22111 222111 vSvS 穩(wěn) 定 流 動(dòng) 時(shí) 的 連 續(xù) 性 方 程常 數(shù)Sv流 體 作 穩(wěn) 定 流 動(dòng) 時(shí) , 同 一 流 管 中 任 一 截 面 處的 流 體 密 度 、 流 速 v 和 該 截 面 面 積 S 的乘 積 為 一 常 量 。 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 6 1 22211 vSvS 若 流 體 不 可 壓 縮 ( 1= 2 ), 則 常 數(shù)Sv不 可 壓 縮 的 流 體 作 穩(wěn) 定 流 動(dòng) 時(shí) , 流 管 的 橫 截面 積 與 該 處 平 均 流 速 的 乘 積 為 一 常 量 。不 可 壓 縮 的 流 體 穩(wěn) 定 流 動(dòng) 時(shí) 的 連 續(xù) 性
5、方 程S大 v小 ; S小 v大 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 7 如 圖 , 在 一 彎 曲 管 中 , 穩(wěn) 流 著 不 可 壓 縮 的密 度 為 的 流 體 . pa = p1、 Sa=S1 , pb =p2 , Sb=S2 , . 求 流 體 的 壓 強(qiáng) p 和 速率 v 之 間 的 關(guān) 系 2vvb 1vv ay xo2y1y 2p1p 1v 2va b 1S 2S 四 、 伯 努 利 方 程 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 82221111 ddd lSplSpA 取 如 圖 所 示 坐 標(biāo) , 在 時(shí) 間 內(nèi) 、 處流 體 分 別 移 動(dòng) 、 td
6、 a b1dx 2dxVlSlS ddd 2211 VppA d)(d 211 1l 11 dll 2l 22 dll y xo2y1y 2p1p 1v 2va b1S 2S 壓 力 做 功 : 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 9 VyygyygmA ddd )()( 21212 21221221 d21d21d)(d)( vv VVVyygVpp 22222111 2121 vv gypgyp =常 量y xo2y1y 2p1p 1v 2va b1A 2A 重 力 做 功 : 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 10 1 若 將 流 管 放 在 水 平 面 上 ,
7、 即 21 yy 221 vgyp 常 量 伯 努 利 方 程則 有 221 vp 常 量y xo2y1y 2p1p 1v 2va b1A 2A 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 11 221 vp 常 量 222211 2121 vv pp即 21 pp 21 vv 若 則結(jié) 論理 想 流 體 在 做 穩(wěn) 定 流 動(dòng) 時(shí) , 流 速 大 的 地 方 壓強(qiáng) 小 , 流 速 小 的 地 方 壓 強(qiáng) 大 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 12 2 靜 止 流 體 中 的 壓 強(qiáng) 分 布 , 即 21 vv 221 vgyp 常 量 伯 努 利 方 程則 有 ghp 常
8、量 h BapAAB ghpghp B ghpp A B 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 13BBB AAA ghvP ghvP 222121 Ah Bh hA B 例 1一 大 蓄 水 池 ,下 面 開 一 小 孔 放 水 .設(shè) 水 面 到小 孔 中 心 的 高 度 為 h ,求 小 孔 處 的 流 速 vB .C解 : 取 自 由 液 面 處 一 點(diǎn) A及 小 孔 處 B點(diǎn) ,應(yīng)用 伯 努 利 方 程 0BABA 0SS PPPvA 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 14Ah Bh hA B )(2 0PPghv CC ghvghPP CAC 221 Cghv
9、B 2 ghhhgv BAB )(221代 入 已 知 條 件 得結(jié) 論 : 小 孔 流速 與 物 體 自 水面 自 由 降 落 到 小 孔 處的 速 度 相 同 。 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 15 例 2: 范 丘 里 流 量 計(jì) 范 丘 里 流 量 計(jì) 是 一 種 最 簡(jiǎn) 單 的 流 量 計(jì) , 測(cè) 量 時(shí) 如 圖 放 置 。 在 A B兩 點(diǎn) 處 取 截 面 SA SB,應(yīng) 用 伯 努 利 方 程 22 2121 BBAA vPvP 222 BABABBAA SS ghSSvSvSQ hA B 22 22 BA AB SS ghSv BBAA vSvS ghPP B
10、A 解 得 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 16 例 3 利 用 一 管 徑 均 勻 的 虹 吸 管 從 水 庫(kù) 中 引 水 ,其 最 高 點(diǎn) B比 水 庫(kù) 水 面 高 3.0m, 管 口 C比 水 庫(kù) 水面 低 5.0m,求 虹 吸 管 內(nèi) 水 的 流 速 和 B點(diǎn) 處 的 壓 強(qiáng) . CCC AAA ghvP ghvP 222121 m/s9.92)(2 2 ghhhgv CAC 1h 2hB CDA代 入,將 0A vPP CA解 ( 1) A、 C兩 點(diǎn) 應(yīng) 用 伯 努 利 方 程 流 體 的 穩(wěn) 定 流 動(dòng)物 理 學(xué)第 五 版 17 (2)對(duì) B、 C兩 點(diǎn) 應(yīng) 用
11、伯 努 利 方 程 CCCBBB ghvPghvP 22 2121 PahhgP hhgPP CBB 4210 0 103.2)( )( CB vv 1h 2hB CDA有 以 上 三 式 可 得0PPC 由 此 可 見(jiàn) , 虹 吸 管 最 高 處 的 壓 強(qiáng) 比 大 氣 壓 強(qiáng) 小 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 18 一 、 基 本 要 求1、 剛 體 的 運(yùn) 動(dòng) 學(xué) : 掌 握 角 位 移 、 角 速 度 和角 加 速 度 等 物 理 量 以 及 角 量 與 線 量 的 關(guān) 系 。2、 理 解 力 矩 、 轉(zhuǎn) 動(dòng) 慣 量 、 角 動(dòng) 量 等 物 理 概念 , 了
12、解 轉(zhuǎn) 動(dòng) 慣 量 計(jì) 算 的 基 本 思 路 。3、 剛 體 的 動(dòng) 力 學(xué) : 掌 握 轉(zhuǎn) 動(dòng) 定 律 、 功 能 原理 、 角 動(dòng) 量 定 理 和 角 動(dòng) 量 守 恒 定 律 并 能 正 確應(yīng) 用 。 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 19 二 、 基 本 內(nèi) 容1、 描 述 剛 體 轉(zhuǎn) 動(dòng) 的 物 理 量角 位 移 d角 速 度 tdd 角 加 速 度 tdd 方 向 : 右 手 螺 旋 方 向角 速 度 和 角 加 速 度 在 定 軸 轉(zhuǎn) 動(dòng) 中 沿 轉(zhuǎn) 軸 方 向 ,可 用 正 負(fù) 表 示 。 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 20 角
13、量 與 線 量 的 關(guān) 系rv r 2 rn 0rv tevrx yz 0r0 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 21 勻 變 速 轉(zhuǎn) 動(dòng) 公 式 剛 體 繞 定 軸 作 勻 變 速 轉(zhuǎn) 動(dòng)質(zhì) 點(diǎn) 勻 變 速 直 線 運(yùn) 動(dòng)at 0vv 22100 attxx v )(2 0202 xxa vv t 0 )(2 0202 22100 tt 當(dāng) 剛 體 繞 定 軸 轉(zhuǎn) 動(dòng) 的 角 加 速 度 =常 量時(shí) , 剛 體 做 勻 變 速 轉(zhuǎn) 動(dòng) 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 22 2、 剛 體 定 軸 轉(zhuǎn) 動(dòng) 定 律 )( tvmamFtJJM dddd
14、 sin rFM FrM 力 矩 方 向 : 右 手 法 則mrJ d 2轉(zhuǎn) 動(dòng) 慣 量 : 2iirmJ Pz *O Fr dM轉(zhuǎn)動(dòng)中心 轉(zhuǎn) 動(dòng) 平 面 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 23 3、 剛 體 轉(zhuǎn) 動(dòng) 的 功 能 原 理 2122 2121 JJMA d )( 2 122 2121 mvmvrdFA 力 矩 的 功 dMA 剛 體 定 軸 轉(zhuǎn) 動(dòng) 動(dòng) 能 221 J剛 體 轉(zhuǎn) 動(dòng) 的 動(dòng) 能 定 理 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 24如 果 只 有 重 力 做 功 , 剛 體 地 球 系 統(tǒng) 機(jī) 械 能 守 恒常 數(shù) 221 Jm
15、ghEE ckp 剛 體 轉(zhuǎn) 動(dòng) 功 能 原 理 )()( 211222 2121 JmghJmghA cc 如 果 系 統(tǒng) 中 包 含 質(zhì) 點(diǎn) , 計(jì) 算 做 功 時(shí) 還 要 包 含 質(zhì)點(diǎn) 所 受 外 力 和 非 保 守 內(nèi) 力 ; 在 計(jì) 算 機(jī) 械 能 時(shí) 要包 含 質(zhì) 點(diǎn) 的 機(jī) 械 能 。 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 25當(dāng) 時(shí)0M 常 量 JL 4、 剛 體 定 軸 轉(zhuǎn) 動(dòng) 角 動(dòng) 量 原 理12 LLtM d )( 12 PPtF dtLM dd )( tPF dd或 )P,F( 常 矢 量 0 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版
16、26 三 、 討 論方 法 1、 質(zhì) 量 為 m, 長(zhǎng) 為 l 的 細(xì) 棒 , 可 繞 o 轉(zhuǎn) 動(dòng) 。 由 水平 位 置 自 由 下 落 。 求 下 落 到 豎 直 位 置 時(shí) 角 速 度 。由 tJJM dd tJlmg dd2求 出 lo gmdd Jtlmg 2 00t 或 )(12 Jlmg )(222 解 出 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 27 方 法 方 法 分 別 判 斷 三 種 方 法 的 正 誤2212 Jlmg 求 出 2212 cmvlmg 求 出 cv又 2lvc 求 出 lo gm 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 28
17、 方 法 由 tJJM dd ddddtJlmg cos2 020 cos2 dd Jlmg求 出 lo gm 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 29 2、 判 斷 角 動(dòng) 量 是 否 守 恒( 2) 對(duì) 定 滑 輪 軸 的 角 動(dòng) 量( 1) 圓 錐 擺 ( 對(duì) 軸 )小 球 質(zhì) 量 為 oo m重 物 、 人 質(zhì) 量 均 為 , 定滑 輪 質(zhì) 量 不 計(jì) , 人 向 上 爬 行mm vo omgm T R開 始 時(shí) 人 和 重 物 處 于 同 一 高 度 , 誰(shuí) 先 到 達(dá)滑 輪 頂 端 ? 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 30 兩 半 徑 不
18、 同 圓 輪 , 1輪 轉(zhuǎn) 動(dòng) , 2輪 靜 止今 將 兩 輪 子 靠 攏 , 輪 被 帶 動(dòng) 而 轉(zhuǎn) 動(dòng)( 3) 對(duì) 軸 O1, (或 O2)的 角 動(dòng) 量1o 2oX 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 31 用 求 導(dǎo) 的 方 法積 分 加 初 始 條 件 剛 體 定 軸 轉(zhuǎn) 動(dòng) 的 運(yùn) 動(dòng) 學(xué) 兩 類 問(wèn) 題 : 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 32 四 、 解 題 指 導(dǎo) 與 典 型 習(xí) 題 分 析 剛 體 定 軸 轉(zhuǎn) 動(dòng) 的 動(dòng) 力 學(xué) 問(wèn) 題 , 大 致 有 三種 類 型 題 。 其 解 題 基 本 步 驟 歸 納 為 : 首 先 分析
19、 各 物 體 所 受 力 和 力 矩 情 況 , 然 后 根 據(jù) 已 知條 件 和 所 求 物 理 量 判 斷 應(yīng) 選 用 的 規(guī) 律 , 最 后列 方 程 求 解 。 用 求 導(dǎo) 的 方 法積 分 加 初 始 條 件 剛 體 定 軸 轉(zhuǎn) 動(dòng) 的 運(yùn) 動(dòng) 學(xué) 兩 類 問(wèn) 題 : 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 33 第 一 類 : 求 剛 體 轉(zhuǎn) 動(dòng) 某 瞬 間 的 角 加 速 度 ,一 般 。對(duì) 一 個(gè) 有 平 動(dòng) 物 體 和 轉(zhuǎn) 動(dòng) 物 體 組 成 的 系統(tǒng) 解 題 原 則 是 :對(duì) 平 動(dòng) 物 體 應(yīng) 用 牛 頓第 二 定 律 ( 分 析 力 ) 通 過(guò) 角 量
20、與 線 量 的 關(guān)系 把 平 轉(zhuǎn) 動(dòng) 聯(lián) 系 起 來(lái) 。對(duì) 剛 體 物 體 應(yīng) 用 轉(zhuǎn) 動(dòng)定 理 ( 分 析 力 矩 )方 法 : 隔 離 體 法 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 34 第 二 類 : 求 剛 體 與 質(zhì) 點(diǎn) 的 碰 撞 、 打 擊 問(wèn) 題 。把 它 們 選 作 一 個(gè) 系 統(tǒng) 時(shí) , 系 統(tǒng) 所 受 合 外 力 矩常 常 等 于 零 , 所 以 系 統(tǒng) 角 動(dòng) 量 守 恒 。 列 方 程時(shí) , 注 意 系 統(tǒng) 始 末 狀 態(tài) 的 總 角 動(dòng) 量 中 各 項(xiàng) 的正 負(fù) 。第 三 類 : 在 剛 體 所 受 的 合 外 力 矩 不 等 于 零時(shí) , 一 般
21、 應(yīng) 用 剛 體 的 轉(zhuǎn) 動(dòng) 角 動(dòng) 量 定 理 和。 對(duì) 于 僅 受 保 守 力 矩 作 用 的 剛 體 轉(zhuǎn)動(dòng) 問(wèn) 題 , 也 可 用 機(jī) 械 能 守 恒 定 律 求 解 。 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 35 | 另 外 : 實(shí) 際 問(wèn) 題 中 常 常 有 多 個(gè) 復(fù) 雜 過(guò) 程 ,要 分 成 幾 個(gè) 階 段 進(jìn) 行 分 析 , 分 別 列 出 方 程 ,進(jìn) 行 求 解 。 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 1 定 滑 輪 的 半 徑 為 r, 繞 軸 的 轉(zhuǎn) 動(dòng) 慣 量為 J, 滑 輪 兩 邊 分 別 懸 掛 質(zhì) 量 為 m1和 m2的 物
22、體 A、 B A置 于 傾 角 為 的 斜 面 上 , 它 和 斜面 間 的 摩 擦 因 數(shù) 為 , 若 B向 下 作 加 速 運(yùn) 動(dòng) 時(shí) ,(設(shè) 繩 的 質(zhì) 量 及 伸 長(zhǎng) 均 不 計(jì) , 繩 與 滑 輪 間 無(wú)滑 動(dòng) , 滑 輪 軸 光 滑 ),求 :(1)其 下 落 的 加 速 度 大 小 ;(2)滑 輪 兩 邊 繩 子 的 張 力 r,J A B 五 : 計(jì) 算 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 37 解 : 分 析 受 力 : 圖 示質(zhì) 點(diǎn) m1 )(cossin 1 11111 amgmgmT 質(zhì) 點(diǎn) 2m )(22222 amTgm N2Tgm1T 2m2T
23、gm 2 y1mN 1Tgm 1f x A Br,J 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 38 滑 輪 ( 剛 體 )解 得討 論 : 是 否 有 其 它 計(jì) 算 方 法 ?)3(12 JrTrT ),( 1122 TTTT 聯(lián) 系 量 raa 21 221 2122 rJmm gmgmgma cossin 功 能 關(guān) 系 ! N2Tgm1T 2m2T gm21mN 1Tgm1rF x 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 39 2、 光 滑 斜 面 傾 角 , 一彈 簧 (k)一 端 固 定 , 另 一端 系 一 繩 繞 過(guò) 一 定 滑 輪 與物 體 m
24、相 連 。 滑 輪 轉(zhuǎn) 動(dòng) 慣量 為 J, 半 徑 為 R。 m mlR,Jk 設(shè) 開 始 時(shí) 彈 簧 處 于 原 長(zhǎng) , 將 物 體 由 靜 止 沿 斜 面下 滑 , 求 m下 滑 l 時(shí) 物 體 的 速 度 為 多 大 。 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 40 解 : 彈 簧 , 定 滑 輪 , 物 體 , 地 球 分 析 系統(tǒng) 機(jī) 械 能 守 恒 (為 什 么 ? ) 222 212121 mvJklsinmgl 則 有 Rv 且解 得 2 22121 21RJm klsinmglv m mlR,Jk 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 3 如
25、 圖 所 示 , 一 質(zhì) 量 為 m的 小 球 由 一繩 索 系 著 , 以 角 速 度 w0在 無(wú) 摩 擦 的 水 平 面上 , 繞 以 半 徑 為 r0的 圓 圈 運(yùn) 動(dòng) 如 果 在 繩 的另 一 端 作 用 一 豎 直 向 下 的 拉 力 , 小 球 則 以半 徑 為 r0/2的 圓 周 運(yùn) 動(dòng) 試 求 :(1)小 球 新 的 角 速 度 ;(2)拉 力 所 作 的 功 r 0mo 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 421 21222 mrmr 0122212 4 rr解 ( 1) 小 球 在 水 平 面 內(nèi) 受 力 始 終 通 過(guò) 軸 ,小 球 對(duì) 軸 的 合 外
26、 力 矩 為 零 , 角 動(dòng) 量 守 恒 ,r0 mo 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 43r 0 mo( 2) 小 球 所 受 重 力 和 支 持 力 不 做 功 , 繩 拉力 對(duì) 小 球 所 做 的 功 等 于 拉 力 對(duì) 軸 力 矩 所 做 的的 功 ; 因 為 拉 力 的 力 矩 為 零 ,根 據(jù)所 以 拉 力 不 做 功 。上 述 論 述 對(duì) 嗎 ? dMA 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 44r0 mo 在 定 義 力 矩 做 功 時(shí) , 我 們 認(rèn) 為 只 有 切 向 里 做功 , 而 法 向 力 與 位 移 垂 直 不 做 功 。
27、 而 在 本 題中 , 小 球 所 受 拉 力 與 位 移 并 不 垂 直 , 小 球 的軌 跡 并 不 是 圓 , 法 向 力 要 做 功 。 2 11222 2121 JJA 21212222 2121 mrmr 202020202020 23214221 mrmrrm )()(根 據(jù) 動(dòng) 能 定 理 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 45 4、 一 長(zhǎng) 為 L, 質(zhì) 量 為 m的 勻 質(zhì) 細(xì) 棒 , 平 放在 粗 糙 的 水 平 桌 面 上 , 設(shè) 細(xì) 棒 與 桌 面 間 的摩 擦 系 數(shù) 為 令 棒 最 初 以 角 速 度 0繞 通 過(guò) 端點(diǎn) 且 垂 直 細(xì) 棒
28、的 光 滑 軸 o轉(zhuǎn) 動(dòng) , 則 它 停 止 轉(zhuǎn)動(dòng) 前 經(jīng) 過(guò) 的 時(shí) 間 為 ( ) mLo 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 46 解 : 棒 從 轉(zhuǎn) 動(dòng) 到 停 止 過(guò) 程( 為 什 么 會(huì) 停 止 轉(zhuǎn) 動(dòng) )微 元 受 摩 擦 力 矩 xgxlmxmgMM ll ddd 00 mglM 21 xgxlmxmgxfM r dddd xx mx ddo rfd 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 47由 角 動(dòng) 量 原 理 00 JJtMt d gmvmt 12 mglM 21 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 48 5、 在
29、 一 光 滑 水 平 面 上 , 有 一 輕 彈 簧 , 一 端固 定 , 一 端 連 接 一 質(zhì) 量 m=1kg 的 滑 塊 , 彈 簧自 然 長(zhǎng) 度 l0=0.2m , 倔 強(qiáng) 系 數(shù) k=100N/m,設(shè) t =0時(shí) , 彈 簧 長(zhǎng) 度 為 l0 , 滑 塊 速 度 v0=5m/s ,方 向 與 彈 簧 垂 直 。 在 某一 時(shí) 刻 , 彈 簧 位 于 與 初始 位 置 垂 直 的 位 置 , 長(zhǎng)度 l=0.5m 。 求 該 時(shí) 刻 滑塊 速 度 v 的 大 小 和 方 向 。 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 49 解 ( 1) 滑 塊 在 水 平 面 內(nèi) 受 力
30、 始 終 通 過(guò) 軸 ,小 球 對(duì) 軸 的 合 外 力 矩 為 零 , 角 動(dòng) 量 守 恒 ,sin0.0 mlvvml 滑 塊 , 彈 簧 系 統(tǒng) 在 此過(guò) 程 中 機(jī) 械 能 守 恒 22020 21)(2121 mvllkmv 解 得 : v=4m/s 5.0sin 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 50 練 習(xí) 一 . 兩 木 塊 A、 B質(zhì) 量 分 別 為 m1、 m2,用 勁 度 系 數(shù)為 k的 輕 彈 簧 相 連 使 彈 簧 壓 縮 x0,并 且 用 線 扎 住 ,放 在光 滑 的 水 平 面 上 ,木 塊 A緊 靠 墻 如 圖 所 示 ,然 后 燒 斷 扎
31、線 ,判 斷 下 列 說(shuō) 法 中 哪 一 個(gè) 正 確 ?A.彈 簧 在 由 初 態(tài) 恢 復(fù) 為 原 長(zhǎng) 的 過(guò) 程 中 ,以 A、 B彈 簧 為系 統(tǒng) ,動(dòng) 量 守 恒 .B.在 上 述 過(guò) 程 中 ,系 統(tǒng) 機(jī) 械能 守 恒 .C.當(dāng) A離 開 墻 后 ,系 統(tǒng) 動(dòng) 量 守 恒 ,機(jī) 械 不 守 恒 .D.當(dāng) A離 開 墻 后 ,系 統(tǒng) 的 機(jī) 械 能 為 ,總 動(dòng) 量 為 零 . 2021 kx B 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 51 練 習(xí) 二 . 在 由 兩 個(gè) 物 體 組 成 的 系 統(tǒng) 不 受 外 力 作用 而 發(fā) 生 非 彈 性 碰 撞 過(guò) 程 中 系
32、統(tǒng) 的A.動(dòng) 能 、 動(dòng) 量 都 守 恒 . B.動(dòng) 能 、 動(dòng) 量 都 不 守 恒 .C.動(dòng) 能 不 守 恒 ,動(dòng) 量 守 恒 . D.動(dòng) 能 守 恒 ,動(dòng) 量 不守 恒 . 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 52 對(duì) 點(diǎn) : 張 力 力 矩 大 小 為 ( ) 方 向 為 ( ) ;重 力 力 矩 大 小 為 ( ) 方 向 為 ( ) ;合 力 矩 大 小 為 ( ) 方 向 為 ( ) 對(duì) 點(diǎn) : 張 力 力 矩 大 小 為 ( ) ,方 向 為 ( ) ;重 力 力 矩 大 小 為 ( ) ,方 向 為 ( ) ;合 力 矩 大 小 為 ( ) ,方 向 為 (
33、 ) 練 習(xí) 三 .如 圖 所 示 , 圓 錐 擺 運(yùn) 動(dòng) 問(wèn) : vo Am Rr 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 53 質(zhì) 點(diǎn) 對(duì) 圓 周 中 心 點(diǎn) 的 角 動(dòng) 量 大 小 為 ( ) , 方 向 為 ( ) ;質(zhì) 點(diǎn) 對(duì) 懸 掛 點(diǎn) 點(diǎn) 的 角 動(dòng) 量 大 小 為 ( ) , 方 向 為 ( ) 質(zhì) 點(diǎn) 對(duì) 點(diǎn) 的 角 動(dòng) 量 是 否 守 恒 ? ( )質(zhì) 點(diǎn) 對(duì) 點(diǎn) 的 角 動(dòng) 量 是 否 守 恒 ? ( ) vo Am Rr 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 54 練 習(xí) 四 自 水 塔 池 引 出 一 條 管 道 向 用 戶 供 水
34、。今 將 閥 門 B關(guān) 閉 , 問(wèn) 此 時(shí) 閥 門 B處 的 計(jì) 示 壓 強(qiáng)為 多 大 ? 設(shè) 水 塔 內(nèi) 水 面 在 閥 門 B以 上 高 h 22 m處 , 且 塔 頂 與 大 氣 相 通 。 h Bap作 業(yè) : 1011冬 季 學(xué) 期大 學(xué) 物 理 一 功 和 能 習(xí) 題 37, 38, 40, 課 本P150 4.27 4.28 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 55 3mkg1000 2510013.1 mNap 25 2251017.3 2281.91000 10013.1 mN mNmNghpp aB 25 21016.2 228.91000 mN mNg
35、hpp aB練 習(xí) 四 解 :練 習(xí) 一 解 : B 練 習(xí) 一 解 : C 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 56 對(duì) 點(diǎn) : 張 力 力 矩 大 小 為 ( ) 方 向 為 ( ) ;重 力 力 矩 大 小 為 ( ) 方 向 為 ( ) ;合 力 矩 大 小 為 ( ) 方 向 為 ( ) 對(duì) 點(diǎn) : 張 力 力 矩 大 小 為 ( ) ,方 向 為 ( ) ;重 力 力 矩 大 小 為 ( ) ,方 向 為 ( ) ;合 力 矩 大 小 為 ( ) ,方 向 為 ( ) 練 習(xí) 三 .如 圖 所 示 , 圓 錐 擺 運(yùn) 動(dòng) 問(wèn) :mgR 圓 周 切 向mgR 圓 周 切 向mgR圓 周 切 向 , 垂 直 向 里mgR圓 周 切 向 , 向 外 vo Am Rr 剛 體 定 軸 轉(zhuǎn) 動(dòng) 習(xí) 題 課物 理 學(xué)第 五 版 57 質(zhì) 點(diǎn) 對(duì) 圓 周 中 心 點(diǎn) 的 角 動(dòng) 量 大 小 為 ( ) , 方 向 為 ( ) ;質(zhì) 點(diǎn) 對(duì) 懸 掛 點(diǎn) 點(diǎn) 的 角 動(dòng) 量 大 小 為 ( ) , 方 向 為 ( ) 質(zhì) 點(diǎn) 對(duì) 點(diǎn) 的 角 動(dòng) 量 是 否 守 恒 ? ( )質(zhì) 點(diǎn) 對(duì) 點(diǎn) 的 角 動(dòng) 量 是 否 守 恒 ? ( )mvR 向 上mvR 如 圖 變 化守 恒不 守 恒 vo Am Rr
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 北師大版數(shù)學(xué)二年級(jí)下冊(cè)《買洗衣機(jī)》課件PPT版
- 小學(xué)生文明禮儀班會(huì)課件
- 質(zhì)量管理軟件質(zhì)量管理與質(zhì)量保證
- 勞務(wù)派遣與專業(yè)外包用工風(fēng)險(xiǎn)防范
- 動(dòng)物個(gè)體發(fā)育與演化課件
- 課外練習(xí)2_長(zhǎng)方形和正方形的面積
- 合同法基本原理( 44頁(yè))
- 醫(yī)師電子化注冊(cè)系統(tǒng)培訓(xùn)(2018醫(yī)師個(gè)人版)(PPT40頁(yè))
- 百度汽車營(yíng)銷
- 斗破蒼穹人物介紹PPT課件
- 養(yǎng)老地產(chǎn)解析
- 字詞句運(yùn)用 (3)(精品)
- 大型財(cái)稅講座產(chǎn)說(shuō)會(huì)流程
- 涂料銷售渠道開發(fā)
- 房地產(chǎn)業(yè)務(wù)流程管理_