喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預覽哦。。。下載后都有,,請放心下載,,文件全都包含在內,,【有疑問咨詢QQ:1064457796 或 1304139763】
哈爾濱工業(yè)大學華德應用技術學院畢業(yè)設計
摘 要
中型貨車驅動橋是汽車的各種總成中涵蓋機械零件、部件、分總成等的品種最多的大總成,驅動橋在傳動系統(tǒng)中起著舉足輕重的作用。本次設計通過對給定的汽車相關參數,確定驅動橋的結構方案,分別計算出主減速器,差速器,驅動半軸和驅動橋殼的主要參數并確定其結構尺寸,并進行強度計算。在傳統(tǒng)的設計計算得出來的數據基礎上,用AUTOCAD軟件繪出驅動橋二維CAD圖。
關鍵詞: 主減速器;差速器;AUTOCAD
ABSTRACT
Truck drive axle is large assembly of mechanical parts, components, sub-assembly and so on that assembly in the car. driving axle plays an important role in the drive system.By the use of given parameters to determine the structure of the program drive axle, and to calculate the parameters of the final drive, differential, drive axle and drive axle housing .And then to identify the main parameters of the structure size, and strength calculation. Drawing AUTOCAD by the data that have been calculated.
Key words: drive axle;differential;AUTOCAD
39
目 錄
摘 要 I
ABSTRACT II
第1章 緒論 1
第2章 總體方案論證 3
2.1 非斷開式驅動橋 3
2.2 斷開式驅動橋 4
2.3 多橋驅動的布置 5
第3章 主減速器設計 7
3.1 主減速器結構方案分析 7
3.1.1螺旋錐齒輪傳動 7
3.1.2結構形式 8
3.2 主減速器主、從動錐齒輪的支承方案 9
3.2.1主動錐齒輪的支承 9
3.2.2從動錐齒輪的支承 10
3.3 主減速器錐齒輪設計 10
3.3.1主減速比的確定 10
3.3.2主減速器錐齒輪的主要參數選擇 12
3.4 主減速器錐齒輪的材料 14
3.5 主減速器錐齒輪的強度計算 15
3.5.1單位齒長圓周力 15
3.5.2齒輪彎曲強度 15
3.5.3 輪齒接觸強度 16
3.6 主減速器錐齒輪軸承的設計計算 17
3.6.1錐齒輪齒面上的作用力 17
3.6.2 錐齒輪軸承的載荷 18
3.7 主動錐齒輪軸花鍵強度 20
第4章 差速器設計 22
4.1 差速器結構形式選擇 22
4.2 普通錐齒輪式差速器齒輪設計 23
4.3 差速器齒輪的材料 26
4.4 普通錐齒輪式差速器齒輪強度計算 26
第5 章 驅動車輪的傳動裝置設計 28
5.1半軸的型式 28
5.2 半軸的設計與計算 29
5.3 半軸的結構設計及材料與熱處理 31
第6章 驅動橋殼設計 33
6.1橋殼的結構型式 33
6.2 橋殼的受力分析及強度計算 34
結 論 35
致 謝 36
參考文獻 37
第1章 緒論
汽車驅動橋是汽車的重大總成,承載著汽車的滿載簧荷重及地面經車輪、車架及承載式車身經懸架給予的鉛垂力、縱向力、橫向力及其力矩,以及沖擊載荷;驅動橋還傳遞著傳動系中的最大轉矩,橋殼還承受著反作用力矩。汽車驅動橋結構型式和設計參數除對汽車的可靠性與耐久性有重要影響外,也對汽車的行駛性能如動力性、經濟性、平順性、通過性、機動性和操動穩(wěn)定性等有直接影響。另外,汽車驅動橋在汽車的各種總成中也是涵蓋機械零件、部件、分總成等的品種最多的大總成。例如,驅動橋包含主減速器、差速器、驅動車輪的傳動裝置(半軸及輪邊減速器)、橋殼和各種齒輪。由上述可見,汽車驅動橋設計涉及的機械零部件及元件的品種極為廣泛,對這些零部件、元件及總成的制造也幾乎要設計到所有的現(xiàn)代機械制造工藝。因此,通過對汽車驅動橋的學習和設計實踐,可以更好的學習并掌握現(xiàn)代汽車設計與機械設計的全面知識和技能。
所設計的貨車驅動橋應滿足制造工藝性好、外形美觀,工作更穩(wěn)定、可靠。驅動橋結構符合中型貨車的整體結構要求。設計的產品要達到結構簡單,修理、保養(yǎng)方便;機件工藝性好,制造容易的要求。
中型貨車通常采用后輪驅動,這樣汽車的平衡性和操作性都將會有很大的提高。后輪驅動的汽車加速時,牽引力將不會由前輪發(fā)出,所以在加速轉彎時,司機就會感到有更大的橫向握持力,操作性能變好。維修費用低也是后輪驅動的一個優(yōu)點,盡管由于構造和車型的不同,這種費用將會有很大的差別。如果你的變速器出了故障,對于后輪驅動的汽車就不需要對差速器進行維修,但是對于前輪驅動的汽車來說也許就有這個必要了,因為這兩個部件是做在一起的。所以后輪驅動必然會使得乘車更加安全、舒適,從而帶來可觀的經濟效益。所以本次設計采用后輪驅動。
本課題的設計思路可分為以下幾點:首先選擇初始方案,JX1090TPR23屬于中型貨車,采用后橋驅動,所設計的驅動橋結構需要符合中型貨車的結構要求;接著選擇各部件的結構形式;最后選擇各部件的具體參數,設計出各主要尺寸。
課題所設計的貨車最高車速90km/h,發(fā)動機標定功率(2600r/min)115kW,最大扭矩(1300~1600r/min)450 Nm。
本章小結
本章對設計的大體結構方案進行選擇。驅動橋的背景及立題的意義和所設計驅動橋的一些主要參數。
第2章 總體方案論證
驅動橋處于動力傳動系的末端,其基本功能是增大由傳動軸或變速器傳來的轉矩,并將動力合理地分配給左、右驅動輪,另外還承受作用于路面和車架或車身之間的垂直力力和橫向力。驅動橋一般由主減速器、差速器、車輪傳動裝置和驅動橋殼等組成。
驅動橋設計應當滿足如下基本要求:
(a)所選擇的主減速比應能保證汽車具有最佳的動力性和燃料經濟性。
(b)外形尺寸要小,保證有必要的離地間隙。
(c)齒輪及其它傳動件工作平穩(wěn),噪聲小。
(d)在各種轉速和載荷下具有高的傳動效率。
(e)在保證足夠的強度、剛度條件下,應力求質量小,尤其是簧下質量應盡量小,以改善汽車平順性。
(f)與懸架導向機構運動協(xié)調,對于轉向驅動橋,還應與轉向機構運動協(xié)調。
(g)結構簡單,加工工藝性好,制造容易,拆裝,調整方便。
驅動橋的結構型式按工作特性分,可以歸并為兩大類,即非斷開式驅動橋和斷開式驅動橋。當驅動車輪采用非獨立懸架時,應該選用非斷開式驅動橋;當驅動車輪采用獨立懸架時,則應該選用斷開式驅動橋。因此,前者又稱為非獨立懸架驅動橋;后者稱為獨立懸架驅動橋。獨立懸架驅動橋結構叫復雜,但可以大大提高汽車在不平路面上的行駛平順性。
2.1 非斷開式驅動橋
普通非斷開式驅動橋,由于結構簡單、造價低廉、工作可靠,廣泛用在各種載貨汽車、客車和公共汽車上,在多數的越野汽車和部分轎車上也采用這種結構。他們的具體結構、特別是橋殼結構雖然各不相同,但是有一個共同特點,即橋殼是一根支承在左右驅動車輪上的剛性空心梁,齒輪及半軸等傳動部件安裝在其中。這時整個驅動橋、驅動車輪及部分傳動軸均屬于簧下質量,汽車簧下質量較大,這是它的一個缺點。
驅動橋的輪廓尺寸主要取決于主減速器的型式。在汽車輪胎尺寸和驅動橋下的最小離地間隙已經確定的情況下,也就限定了主減速器從動齒輪直徑的尺寸。在給定速比的條件下,如果單級主減速器不能滿足離地間隙要求,可該用雙級結構。在雙級主減速器中,通常把兩級減速器齒輪放在一個主減速器殼體內,也可以將第二級減速齒輪作為輪邊減速器。對于輪邊減速器:越野汽車為了提高離地間隙,可以將一對圓柱齒輪構成的輪邊減速器的主動齒輪置于其從動齒輪的垂直上方;公共汽車為了降低汽車的質心高度和車廂地板高度,以提高穩(wěn)定性和乘客上下車的方便,可將輪邊減速器的主動齒輪置于其從動齒輪的垂直下方;有些雙層公共汽車為了進一步降低車廂地板高度,在采用圓柱齒輪輪邊減速器的同時,將主減速器及差速器總成也移到一個驅動車輪的旁邊。
在少數具有高速發(fā)動機的大型公共汽車、多橋驅動汽車和超重型載貨汽車上,有時采用蝸輪式主減速器,它不僅具有在質量小、尺寸緊湊的情況下可以得到大的傳動比以及工作平滑無聲的優(yōu)點,而且對汽車的總體布置很方便。
2.2 斷開式驅動橋
斷開式驅動橋區(qū)別于非斷開式驅動橋的明顯特點在于前者沒有一個連接左右驅動車輪的剛性整體外殼或梁。斷開式驅動橋的橋殼是分段的,并且彼此之間可以做相對運動,所以這種橋稱為斷開式的。另外,它又總是與獨立懸掛相匹配,故又稱為獨立懸掛驅動橋。這種橋的中段,主減速器及差速器等是懸置在車架橫粱或車廂底板上,或與脊梁式車架相聯(lián)。主減速器、差速器與傳動軸及一部分驅動車輪傳動裝置的質量均為簧上質量。兩側的驅動車輪由于采用獨立懸掛則可以彼此致立地相對于車架或車廂作上下擺動,相應地就要求驅動車輪的傳動裝置及其外殼或套管作相應擺動。
汽車懸掛總成的類型及其彈性元件與減振裝置的工作特性是決定汽車行駛平順性的主要因素,而汽車簧下部分質量的大小,對其平順性也有顯著的影響。斷開式驅動橋的簧下質量較小,又與獨立懸掛相配合,致使驅動車輪與地面的接觸情況及對各種地形的適應性比較好,由此可大大地減小汽車在不平路面上行駛時的振動和車廂傾斜,提高汽車的行駛平順性和平均行駛速度,減小車輪和車橋上的動載荷及零件的損壞,提高其可靠性及使用壽命。但是,由于斷開式驅動橋及與其相配的獨立懸掛的結構復雜,故這種結構主要見于對行駛平順性要求較高的一部分轎車及一些越野汽車上,且后者多屬于輕型以下的越野汽車或多橋驅動的重型越野汽車。
2.3 多橋驅動的布置
為了提高裝載量和通過性,有些重型汽車及全部中型以上的越野汽車都是采用多橋驅動,常采用的有4×4、6×6、8×8等驅動型式。在多橋驅動的情況下,動力經分動器傳給各驅動橋的方式有兩種。相應這兩種動力傳遞方式,多橋驅動汽車各驅動橋的布置型式分為非貫通式與貫通式。前者為了把動力經分動器傳給各驅動橋,需分別由分動器經各驅動橋自己專用的傳動軸傳遞動力,這樣不僅使傳動軸的數量增多,且造成各驅動橋的零件特別是橋殼、半軸等主要零件不能通用。而對8×8汽車來說,這種非貫通式驅動橋就更不適宜,也難于布置了。
為了解決上述問題,現(xiàn)代多橋驅動汽車都是采用貫通式驅動橋的布置型式。
在貫通式驅動橋的布置中,各橋的傳動軸布置在同一縱向鉛垂平面內,并且各驅動橋不是分別用自己的傳動軸與分動器直接聯(lián)接,而是位于分動器前面的或后面的各相鄰兩橋的傳動軸,是串聯(lián)布置的。汽車前后兩端的驅動橋的動力,是經分動器并貫通中間橋而傳遞的。其優(yōu)點是,不僅減少了傳動軸的數量,而且提高了各驅動橋零件的相互通用性,并且簡化了結構、減小了體積和質量。這對于汽車的設計(如汽車的變型)、制造和維修,都帶來方便。
由于非斷開式驅動橋結構簡單、造價低廉、工作可靠,查閱資料,參照國內相關貨車的設計,最后本課題選用非斷開式驅動橋。
其結構如圖2-1所示:
1-半軸 2-圓錐滾子軸承 3-支承螺栓 4-主減速器從動錐齒輪 5-油封 6-主減速器主動錐齒輪 7-彈簧座 8-墊圈 9-輪轂 10-調整螺母
圖2-1 驅動橋
本章小結
本章主要對驅動橋的總體方案進行論證通過比較結構的優(yōu)缺點從而選擇最適合方案。
第3章 主減速器設計
主減速器是汽車傳動系中減小轉速、增大扭矩的主要部件,它是依靠齒數少的錐齒輪帶動齒數多的錐齒輪。對發(fā)動機縱置的汽車,其主減速器還利用錐齒輪傳動以改變動力方向。由于汽車在各種道路上行使時,其驅動輪上要求必須具有一定的驅動力矩和轉速,在動力向左右驅動輪分流的差速器之前設置一個主減速器后,便可使主減速器前面的傳動部件如變速器、萬向傳動裝置等所傳遞的扭矩減小,從而可使其尺寸及質量減小、操縱省力。
驅動橋中主減速器、差速器設計應滿足如下基本要求:
(a)所選擇的主減速比應能保證汽車既有最佳的動力性和燃料經濟性。
(b)外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動件工作平穩(wěn),噪音小。
(c)在各種轉速和載荷下具有高的傳動效率;與懸架導向機構與動協(xié)調。
(d)在保證足夠的強度、剛度條件下,應力求質量小,以改善汽車平順性。
(e)結構簡單,加工工藝性好,制造容易,拆裝、調整方便。
3.1 主減速器結構方案分析
主減速器的結構形式主要是根據齒輪類型、減速形式的不同而不同。
3.1.1螺旋錐齒輪傳動
圖3-1螺旋錐齒輪傳動
按齒輪副結構型式分,主減速器的齒輪傳動主要有螺旋錐齒輪式傳動、雙曲面齒輪式傳動、圓柱齒輪式傳動(又可分為軸線固定式齒輪傳動和軸線旋轉式齒輪傳動即行星齒輪式傳動)和蝸桿蝸輪式傳動等形式。
在發(fā)動機橫置的汽車驅動橋上,主減速器往往采用簡單的斜齒圓柱齒輪;在發(fā)動機縱置的汽車驅動橋上,主減速器往往采用圓錐齒輪式傳動或準雙曲面齒輪式傳動。
為了減少驅動橋的外輪廓尺寸,主減速器中基本不用直齒圓錐齒輪而采用螺旋錐齒輪。因為螺旋錐齒輪不發(fā)生根切(齒輪加工中產生輪齒根部切薄現(xiàn)象,致使齒輪強度大大降低)的最小齒數比直齒輪的最小齒數少,使得螺旋錐齒輪在同樣的傳動比下主減速器結構較緊湊。此外,螺旋錐齒輪還具有運轉平穩(wěn)、噪聲小等優(yōu)點,汽車上獲得廣泛應用。
近年來,有些汽車的主減速器采用準雙曲面錐齒輪(車輛行業(yè)中簡稱雙曲面?zhèn)鲃樱﹤鲃印孰p曲面錐齒輪傳動與圓錐齒輪相比,準雙曲面齒輪傳動不僅工作平穩(wěn)性更好,彎曲強度和接觸強度更高,同時還可使主動齒輪的軸線相對于從動齒輪軸線偏移。當主動準雙曲面齒輪軸線向下偏移時,可降低主動錐齒輪和傳動軸位置,從而有利于降低車身及整車重心高度,提高汽車行使的穩(wěn)定性。東風EQ1090E型汽車即采用下偏移準雙曲面齒輪。但是,準雙曲面齒輪傳遞轉矩時,齒面間有較大的相對滑動,且齒面間壓力很大,齒面油膜很容易被破壞。為減少摩擦,提高效率,必須采用含防刮傷添加劑的雙曲面齒輪油,絕不允許用普通齒輪油代替,否則將時齒面迅速擦傷和磨損,大大降低使用壽命。
經方案論證,主減速器的齒輪選用螺旋錐齒輪傳動形式(如圖3-1示)。螺旋錐齒輪傳動的主、從動齒輪軸線垂直相交于一點,齒輪并不同時在全長上嚙合,而是逐漸從一端連續(xù)平穩(wěn)地轉向另一端。另外,由于輪齒端面重疊的影響,至少有兩對以上的輪齒同時捏合,所以它工作平穩(wěn)、能承受較大的負荷、制造也簡單。為保證齒輪副的正確嚙合,必須將支承軸承預緊,提高支承剛度,增大殼體剛度。[1] [2]
3.1.2結構形式
為了滿足不同的使用要求,主減速器的結構形式也是不同的。
按參加減速傳動的齒輪副數目分,有單級式主減速器和雙級式主減速器、雙速主減速器、雙級減速配以輪邊減速器等。雙級式主減速器應用于大傳動比的中、重型汽車上,若其第二級減速器齒輪有兩副,并分置于兩側車輪附近,實際上成為獨立部件,則稱輪邊減速器。單級式主減速器應用于轎車和一般輕、中型載貨汽車。單級主減速器由一對圓錐齒輪組成,具有結構簡單、質量小、成本低、使用簡單等優(yōu)點。
本設計主減速器采用單級主減速器。其傳動比i0一般小于等于7?!?】
3.2 主減速器主、從動錐齒輪的支承方案
主減速器中心必須保證主從動齒輪具有良好的嚙合狀況,才能使它們很好地工作。齒輪的正確嚙合,除了與齒輪的加工質量裝配調整及軸承主減速器殼體的剛度有關以外,還與齒輪的支承剛度密切相關。
3.2.1主動錐齒輪的支承
圖3-2主動錐齒輪跨置式
主動錐齒輪的支承形式可分為懸臂式支承和跨置式支承兩種。查閱資料、文獻,經方案論證,采用跨置式支承結構(如圖3-2示)。齒輪前、后兩端的軸頸均以軸承支承,故又稱兩端支承式??缰檬街С惺怪С袆偠却鬄樵黾樱过X輪在載荷作用下的變形大為減小,約減小到懸臂式支承的1/30以下.而主動錐齒輪后軸承的徑向負荷比懸臂式的要減小至1/5~1/7。齒輪承載能力較懸臂式可提高10%左右。
裝載質量為2t以上的汽車主減速器主動齒輪都是采用跨置式支承。本課題所設計的JX1090TPR23貨車裝載質量為4.44t,所以選用跨置式。
圖3-3從動錐齒輪支撐形式
3.2.2從動錐齒輪的支承
從動錐齒輪采用圓錐滾子軸承支承(如圖3-3示)。為了增加支承剛度,兩軸承的圓錐滾子大端應向內,以減小尺寸c+d。為了使從動錐齒輪背面的差速器殼體處有足夠的位置設置加強肋以增強支承穩(wěn)定性,c+d應不小于從動錐齒輪大端分度圓直徑的70%。為了使載荷能均勻分配在兩軸承上,應是c等于或大于d。
3.3 主減速器錐齒輪設計
主減速比、驅動橋的離地間隙和計算載荷,是主減速器設計的原始數據,應在汽車總體設計時就確定。
3.3.1主減速比的確定
主減速比對主減速器的結構型式、輪廓尺寸、質量大小以及當變速器處于最高檔位時汽車的動力性和燃料經濟性都有直接影響。的選擇應在汽車總體設計時和傳動系的總傳動比i一起由整車動力計算來確定。可利用在不同下的功率平衡田來研究對汽車動力性的影響。通過優(yōu)化設計,對發(fā)動機與傳動系參數作最佳匹配的方法來選擇值,可使汽車獲得最佳的動力性和燃料經濟性。
對于具有很大功率儲備的轎車、長途公共汽車尤其是競賽車來說,在給定發(fā)動機最大功率及其轉速的情況下,所選擇的值應能保證這些汽車有盡可能高的最高車速。這時值應按下式來確定:
(3-1)
式中——車輪的滾動半徑,
——變速器量高檔傳動比。
對于其他汽車來說,為了得到足夠的功率儲備而使最高車速稍有下降,一般選擇比上式求得的大10%~25%,即按下式選擇:
(3-2)
式中——分動器或加力器的高檔傳動比
——輪邊減速器的傳動比。
根據所選定的主減速比值,就可基本上確定主減速器的減速型式(單級、雙級等以及是否需要輪邊減速器),并使之與汽車總布置所要求的離地間隙相適應。
把, , , 代入(3-1)
計算出
從動錐齒輪計算轉矩
(3-3)
式中:
—主減速器從動齒輪最大應力載荷,Nm;
—發(fā)動機最大轉矩;
—變速器傳動比,;
—主減速器傳動比,;
—傳動系上述傳動部分的傳動效率,;
代入式(3-3),有:
主動錐齒輪計算轉矩當計算主減速齒輪時,應將以上各式分別除以該對齒輪的減速比及傳動效率。
3.3.2主減速器錐齒輪的主要參數選擇
a)主、從動錐齒輪齒數和
選擇主、從動錐齒輪齒數時應考慮如下因素;
為了嚙合平穩(wěn)、噪音小和具有高的疲勞強度,大小齒輪的齒數和不少于40在轎車主減速器中,小齒輪齒數不大于9。
查閱資料,經方案論證,主減速器的傳動比為5.72,初定主動齒輪齒數,從動齒輪齒數。
b)主、從動錐齒輪齒形參數計算
按照文獻中的設計計算方法進行設計和計算,結果見表。
從動錐齒輪分度圓直徑 取
齒輪端面模數
表3-1 主減速器螺旋錐齒輪的幾何尺寸計算用表
序 號
項 目
計 算 公 式
計 算 結 果
1
主動齒輪齒數
2
從動齒輪齒數
3
端面模數
4
齒面寬
5
齒工作高
6
全齒高
7
法向壓力角
8
軸交角
9
節(jié)圓直徑
10
節(jié)錐角
11
節(jié)錐距
12
周節(jié)
13
齒頂高
14
齒根高
15
徑向間隙
16
齒根角
17
面錐角
18
根錐角
19
齒頂圓直徑
c)中點螺旋角
弧齒錐齒輪副的中點螺旋角是相等的。汽車主減速器弧齒錐齒輪螺旋角的平均螺旋角一般為。貨車選用較小的值以保證較大的,使運轉平穩(wěn),噪音低。取。
d)法向壓力角
法向壓力角大一些可以增加輪齒強度,減少齒輪不發(fā)生根切的最少齒數,也可以使齒輪運轉平穩(wěn),噪音低。對于貨車弧齒錐齒輪,一般選用。
e) 螺旋方向
從錐齒輪錐頂看,齒形從中心線上半部向左傾斜為左旋,向右傾斜為右旋。主、從動錐齒輪的螺旋方向是相反的。螺旋方向與錐齒輪的旋轉方向影響其所受軸向力的方向。當變速器掛前進擋時,應使主動齒輪的軸向力離開錐頂方向,這樣可以使主、從動齒輪有分離趨勢,防止輪齒卡死而損壞。
3.4 主減速器錐齒輪的材料
驅動橋錐齒輪的工作條件是相當惡劣的,與傳動系其它齒輪相比,具有載荷大、作用時間長、變化多、有沖擊等特點。因此,傳動系中的主減速器齒輪是個薄弱環(huán)節(jié)。主減速器錐齒輪的材料應滿足如下的要求:
(a)具有高的彎曲疲勞強度和表面接觸疲勞強度,齒面高的硬度以保證有高的耐磨性。
(b)齒輪芯部應有適當的韌性以適應沖擊載荷,避免在沖擊載荷下齒根折斷。
(c)鍛造性能、切削加工性能以及熱處理性能良好,熱處理后變形小或變形規(guī)律易控制。
(d)選擇合金材料是,盡量少用含鎳、鉻呀的材料,而選用含錳、釩、硼、鈦、鉬、硅等元素的合金鋼。
汽車主減速器錐齒輪與差速器錐齒輪目前常用滲碳合金鋼制造,主要有20CrMnTi、20MnVB、20MnTiB、22CrNiMo和16SiMn2WMoV。滲碳合金鋼的優(yōu)點是表面可得到含碳量較高的硬化層(一般碳的質量分數為0.8%~1.2%),具有相當高的耐磨性和抗壓性,而芯部較軟,具有良好的韌性。因此,這類材料的彎曲強度、表面接觸強度和承受沖擊的能力均較好。由于鋼本身有較低的含碳量,使鍛造性能和切削加工性能較好。其主要缺點是熱處理費用較高,表面硬化層以下的基底較軟,在承受很大壓力時可能產生塑性變形,如果滲碳層與芯部的含碳量相差過多,便會引起表面硬化層的剝落。
為改善新齒輪的磨合,防止其在余興初期出現(xiàn)早期的磨損、擦傷、膠合或咬死,錐齒輪在熱處理以及精加工后,作厚度為0.005~0.020mm的磷化處理或鍍銅、鍍錫處理。對齒面進行應力噴丸處理,可提高25%的齒輪壽命。對于滑動速度高的齒輪,可進行滲硫處理以提高耐磨性。
3.5 主減速器錐齒輪的強度計算
3.5.1單位齒長圓周力
按發(fā)動機最大轉矩計算時
(3-4)
式中:
—變速器傳動比,常取一擋傳動比,;
—主動錐齒輪中點分度圓直徑mm;
其它符號同前;
將各參數代入式(3-4),有:
按照文獻[1], ,錐齒輪的表面耐磨性滿足要求。
3.5.2齒輪彎曲強度
錐齒輪輪齒的齒根彎曲應力為:
(3-5)
式中:
—汽車主減速器螺旋錐齒輪輪齒的計算彎曲應力,MPa;
—該齒輪的計算轉矩,Nm;對于主動齒輪還需將上述計算轉矩換算到主動齒輪上
—過載系數,一般取1;
—尺寸系數,0.792;
—載荷分配系數,當兩個齒輪均均用騎馬式支承型時懸臂式結構,;當一個齒輪用騎馬式支承時,。支承剛度大時取小值;
—質量系數,對于汽車驅動橋齒輪,當輪齒接觸良好,周節(jié)及徑向跳動精度高時,可取1;
—所計算的齒輪齒面寬;
—斷面模數,;
—計算彎曲應力用的綜合系數,取0.195;
對于主動錐齒輪, ;從動錐齒輪,;
將各參數代入式(3-5),有:
主動錐齒輪,;
從動錐齒輪,;
主從動錐齒輪的,輪齒彎曲強度滿足要求。[1]
3.5.3 輪齒接觸強度
錐齒輪輪齒的齒面接觸應力為:
(3-6)
式中:
—錐齒輪輪齒的齒面接觸應力,;
=主動齒輪最大轉矩,
—齒面寬,;取齒輪副中的較小值(一般為從動齒輪輪齒面寬)
—齒面品質系數,??;
—綜合彈性系數,??;
—尺寸系數,??;
—齒面接觸強度的綜合系數,??;
—主動錐齒輪計算轉矩;
、、選擇同式(3-5)
將各參數代入式 (3-6),有:
,輪齒接觸強度滿足要求。[1]
3.6 主減速器錐齒輪軸承的設計計算
3.6.1錐齒輪齒面上的作用力
齒輪在工作過程中,相互嚙合的齒面上作用有一法向力。該法向力可分解為沿齒輪切向方向的圓周力、沿齒輪軸線方向的軸向力及垂直于齒輪軸線的徑向力。
對于圓錐齒輪的齒面中點的分度圓直徑為計算作用在齒輪的圓周力,首先需要確定計算轉矩。汽車在行駛過程中,由于變速器擋位的改變,且發(fā)動機也不全處于最大轉矩狀態(tài),故主減速器齒輪的工作轉矩處于經常變化中。實踐表明,軸承的主要損壞形式為疲勞損傷,所以應按輸入的當量轉矩進行計算。
式中:——發(fā)動機最大轉矩,在此取372N·m;
,…——變速器在各擋的使用率,
,…——變速器各擋的傳動比;
,…——變速器在各擋時的發(fā)動機的利用率;
經計算為。
(a)齒寬中點處的圓周力
(3-7)
式中:
—作用在從動齒輪上的轉矩;
—從動齒輪齒寬中點處的分度圓直徑,由式(3-8)確定,即
(3-8)
式中:
—從動齒輪大端分度圓直徑;
—從動齒輪齒面寬;
—從動齒輪節(jié)錐角;
將各參數代入式(3-8),有:
將各參數代入式(3-7),有:
對于弧齒錐齒輪副,作用在主、從動齒輪上的圓周力是相等的。
(b)錐齒輪的軸向力和徑向力(主動錐齒輪)
作用在主動錐齒輪齒面上的軸向力和徑向力分別為
(3-9)
(3-10)
將各參數分別代入式(3-9) 與式(3-10)中,有:
,
3.6.2 錐齒輪軸承的載荷
當錐齒輪齒面上所受的圓周力、軸向力和徑向力計算確定后,根據主減速器齒輪軸承的布置尺寸,即可求出軸承所受的載荷。圖3-4為單級主減速器的跨置式支承的尺寸布置圖:
圖3-4單級主減速器軸承布置尺寸
圖3—4中各參數尺寸:
,,,。
由主動錐齒輪齒面受力簡圖(圖3-5所示),得出各軸承所受的徑向力與軸向力。
圖3-5主動錐齒輪齒面受力簡圖
軸承A,B的徑向載荷分別為
(3-11)
(3-12)
根據上式已知,,,,
所以軸承A的徑向力:
==3497.137N
其軸向力為0。
軸承B的徑向力:
= =8171.64N
(1) 對于軸承A,只承受徑向載荷所以采用圓柱滾子軸承NU207E(內徑35,外徑72),此軸承的額定動載荷Cr為46.5KN,所承受的當量動載荷。
(2) 對于軸承B,在此并不是一個軸承,而是一對軸承,對于成對安裝的軸承組的計算當量載荷時徑向動載荷系數X和軸向動載荷系數Y值按雙列軸承選用,e值與單列軸承相同。在此選用30212型軸承。
(3) 對于從動齒輪的軸承C,D的徑向力由計算公式較核,軸承C,D均采用30216(內徑80,外徑140),其額定動載荷Cr為150.8KN。
3.7 主動錐齒輪軸花鍵強度
主動錐齒輪軸材料屬性
材料為20CrMnTi;
許用扭轉剪應力;
許用彎曲應力;
按扭轉強度初選軸頸
轉矩 (3-13)
式中:
——計算載荷,;
——主減速器傳動比;
計得 .
扭轉剪應力:
將各參數代入上式得軸徑取;
經驗算得軸的強度合格。
主動錐齒輪花鍵強度計算
按GB3478.2-83主動錐齒輪軸花鍵選取,平根齒漸開線花鍵。
1、花鍵的剪切應力
(3-14)
式中:——齒輪軸傳遞的轉矩
——花鍵模數;
——花鍵齒數;
——花鍵外徑;
——相配合花鍵孔內徑;
——花鍵工作長度;
——花鍵齒寬;
——載荷分布不均勻系數;
——許用剪應力
各參數代入上式得:,取。
2、花鍵的擠壓應力
(3-15)
代入各參數計算得:
所以花鍵強度合格。
本章小結
本章對主減速器中的齒輪型式,主減速器的主從動錐齒輪的支承方案,齒輪的材料以及強度的計算等進行設計確定主減速器的設計方案。
第4章 差速器設計
汽車在行使過程中,左右車輪在同一時間內所滾過的路程往往是不相等的,左右兩輪胎內的氣壓不等、胎面磨損不均勻、兩車輪上的負荷不均勻而引起車輪滾動半徑不相等;左右兩輪接觸的路面條件不同,行使阻力不等等。這樣,如果驅動橋的左、右車輪剛性連接,則不論轉彎行使或直線行使,均會引起車輪在路面上的滑移或滑轉,一方面會加劇輪胎磨損、功率和燃料消耗,另一方面會使轉向沉重,通過性和操縱穩(wěn)定性變壞。為此,在驅動橋的左右車輪間都裝有輪間差速器。
差速器是個差速傳動機構,用來在兩輸出軸間分配轉矩,并保證兩輸出軸有可能以不同的角速度轉動,用來保證各驅動輪在各種運動條件下的動力傳遞,避免輪胎與地面間打滑。差速器按其結構特征可分為齒輪式、凸輪式、蝸輪式和牙嵌自由輪式等多種形式。
4.1 差速器結構形式選擇
汽車上廣泛采用的差速器為對稱錐齒輪式差速器,具有結構簡單、質量較小等優(yōu)點,應用廣泛。它可分為普通錐齒輪式差速器、摩擦片式差速器和強制鎖止式差速器。
普通齒輪式差速器的傳動機構為齒輪式。齒輪差速器要圓錐齒輪式和圓柱齒輪式兩種。
強制鎖止式差速器就是在對稱式錐齒輪差速器上設置差速鎖。當一側驅動輪滑轉時,可利用差速鎖使差速器不起差速作用。差速鎖在軍用汽車上應用較廣。
經方案論證,差速器結構形式選擇對稱式圓錐行星齒輪差速器【5】。
普通的對稱式圓錐行星齒輪差速器由差速器左、右殼,2個半軸齒輪,4個行星齒輪(少數汽車采用3個行星齒輪,小型、微型汽車多采用2個行星齒輪),行星齒輪軸(不少裝4個行星齒輪的差逮器采用十字軸結構),半軸齒輪及行星齒輪墊片等組成。由于其結構簡單、工作平穩(wěn)、制造方便、用在公路汽車上也很可靠等優(yōu)點,最廣泛地用在轎車、客車和各種公路用載貨汽車上.有些越野汽車也采用了這種結構,但用到越野汽車上需要采取防滑措施。例如加進摩擦元件以增大其內摩擦,提高其鎖緊系數;或加裝可操縱的、能強制鎖住差速器的裝置——差速鎖等。
4.2 普通錐齒輪式差速器齒輪設計
(a) 行星齒輪數n
通常情況下,貨車的行星齒輪數。
(b) 行星齒輪球面半徑
行星齒輪球面半徑反映了差速器錐齒輪節(jié)錐矩的大小和承載能力。
(4-1)
式中:
—行星齒輪球面半徑系數,,對于有四個行星齒輪的轎車或公路載貨汽車取小值;
—差速器計算轉矩,;
將各參數代入式(4-1),有:
(c)行星齒輪和半軸齒輪齒數和
為了使輪齒有較高的強度,一般不少于10。半軸齒輪齒數在14~25選用。大多數汽車的半軸齒輪與行星齒輪的齒數比在1.5~2.0的范圍內,且半軸齒輪齒數和必須能被行星齒輪齒數整除。
查閱資料,經方案論證,初定半軸齒輪與行星齒輪的齒數比,半軸齒輪齒數,行星齒輪的齒數 。
d) 行星齒輪和半軸齒輪節(jié)錐角、及模數
行星齒輪和半軸齒輪節(jié)錐角、分別為
(4-2)
(4-3)
將各參數分別代入式(4—2)與式(4—3),有:
,°
錐齒輪大端模數為
(4-4)
將各參數代入式(4-4),有:
取模數【3】
(e)半軸齒輪與行星齒輪齒形參數
按照文獻[3]中的設計計算方法進行設計和計算,結果見表4-1。
(f)壓力角
汽車差速齒輪大都采用壓力角,齒高系數為0.8的齒形,最少齒數為10。
行星齒輪安裝孔的直徑及其深度
行星齒輪的安裝孔的直徑與行星齒輪軸的名義尺寸相同,而行星齒輪的安裝孔的深度就是行星齒輪在其軸上的支承長度,通常?。?
(4-5)
表4-1 差速器齒輪參數
序號
項目
計算公式
計算結果
1
行星齒輪齒數
,應盡量取最小值
2
半軸齒輪齒數
,且需滿足式(3-4)
3
模數
4
齒面寬
;
5
齒工作高
6
齒全高
7
壓力角
8
軸交角
9
節(jié)圓直徑
;
=108
10
節(jié)錐角
,
,
11
節(jié)錐距
12
周節(jié)
13
齒頂高
;
14
齒根高
;
;
15
徑向間隙
16
齒根角
;
;
17
外圓直徑
4.3 差速器齒輪的材料
差速器齒輪和主減速器齒輪一樣,基本上都是用滲碳合金鋼制造,目前用于制造差速器錐齒輪的材料為20CrMnTi、20CrMoTi、22CrMnMo和20CrMo等。由于差速器齒輪輪齒要求的精度較低,所以精鍛差速器齒輪工藝已被廣泛應用。
4.4 普通錐齒輪式差速器齒輪強度計算
差速器齒輪的尺寸受結構限制,而且承受的載荷較大,它不像主減速器齒輪那樣經常處于嚙合傳動狀態(tài),只有當汽車轉彎或左、右輪行使不同的路程時,或一側車輪打滑而滑轉時,差速器齒輪才能有嚙合傳動的相對運動。因此,對于差速器齒輪主要應進行彎曲強度計算。
齒彎曲強度為
(4-6)
式中:——差速器一個行星齒輪傳給一個半軸齒輪的轉矩,其計算式
在此為1948.035 N·m;
——差速器的行星齒輪數;
——半軸齒輪齒數;
——計算汽車差速器齒輪彎曲應力用的綜合系數查得=0.226
根據上式所以,差速器齒輪滿足彎曲強度要求。
本章小結
本章主要對差速器的結構型式進行選擇,差速器的錐齒輪的設計,材料的選擇,以及對其強度進行校核。
第5 章 驅動車輪的傳動裝置設計
驅動車輪的傳動裝置位于汽車傳動系的末端,其功用是將轉矩由差速器半軸齒輪傳給驅動車輪。在斷開式驅動橋和轉向驅動橋中,驅動車輪的傳動裝置包括半軸和萬向節(jié)傳動裝置且多采用等速萬向節(jié)。在一般非斷開式驅動橋上,驅動車輪的傳動裝置就是半軸,這時半軸將差速器半軸齒輪與輪轂連接起來。在裝有輪邊減速器的驅動橋上,半軸將半軸齒輪與輪邊減速器的主動齒輪連接起來。
5.1半軸的型式
普通非斷開式驅動橋的半軸,根據其外端的支承型式或受力狀況的不同而分為半浮式、3/4浮式和全浮式三種。
半浮式半軸以靠近外端的軸頸直接支承在置于橋殼外端內孔中的軸承上,而端部則以具有錐面的軸頸及鍵與車輪輪轂相固定,或以突緣直接與車輪輪盤及制動鼓相聯(lián)接)。因此,半浮式半軸除傳遞轉矩外,還要承受車輪傳來的彎矩。由此可見,半浮式半軸承受的載荷復雜,但它具有結構簡單、質量小、尺寸緊湊、造價低廉等優(yōu)點。用于質量較小、使用條件較好、承載負荷也不大的轎車和輕型載貨汽車。
3/4浮式半軸的結構特點是半軸外端僅有一個軸承并裝在驅動橋殼半軸套管的端部,直接支承著車輪輪轂,而半軸則以其端部與輪轂相固定。由于一個軸承的支承剛度較差,因此這種半軸除承受全部轉矩外,彎矩得由半軸及半軸套管共同承受,即3/4浮式半軸還得承受部分彎矩,后者的比例大小依軸承的結構型式及其支承剛度、半軸的剛度等因素決定。側向力引起的彎矩使軸承有歪斜的趨勢,這將急劇降低軸承的壽命??捎糜谵I車和輕型載貨汽車,但未得到推廣。
全浮式半軸的外端與輪轂相聯(lián),而輪轂又由一對軸承支承于橋殼的半軸套管上。多采用一對圓錐滾子軸承支承輪轂,且兩軸承的圓錐滾子小端應相向安裝并有一定的預緊,調好后由鎖緊螺母予以鎖緊,很少采用球軸承的結構方案。
由于車輪所承受的垂向力、縱向力和側向力以及由它們引起的彎矩都經過輪轂、輪轂軸承傳給橋殼,故全浮式半軸在理論上只承受轉矩而不承受彎矩。但在實際工作中由于加工和裝配精度的影響及橋殼與軸承支承剛度的不足等原因,仍可能使全浮式半軸在實際使用條件下承受一定的彎矩,彎曲應力約為5~70MPa。具有全浮式半軸的驅動橋的外端結構較復雜,需采用形狀復雜且質量及尺寸都較大的輪轂,制造成本較高,故轎車及其他小型汽車不采用這種結構。但由于其工作可靠,故廣泛用于輕型以上的各類汽車上。
5.2 半軸的設計與計算
半軸的主要尺寸是它的直徑,設計與計算時首先應合理地確定其計算載荷。
半軸的計算應考慮到以下三種可能的載荷工況:
(a)縱向力最大時()附著系數尹取0.8,沒有側向力作用;
(b)側向力最大時,其最大值發(fā)生于側滑時,為中,,側滑時輪胎與地面?zhèn)认蚋街禂?,在計算中?.0,沒有縱向力作用;
(c)垂向力最大時,這發(fā)生在汽車以可能的高速通過不平路面時,其值為,是動載荷系數,這時沒有縱向力和側向力的作用。
由于車輪承受的縱向力、側向力值的大小受車輪與地面最大附著力的限制,即:
故縱向力X2最大時不會有側向力作用,而側向力Y2最大時也不會有縱向力作用。
全浮式半軸的設計計算
本課題采用帶有凸緣的全浮式半軸,其詳細的計算校核如下:
(a)全浮式半軸計算載荷的確定
全浮式半軸只承受轉矩,其計算轉矩按下式進行:
(5-1)
式中:——差速器的轉矩分配系數,對圓錐行星齒輪差速器可?。?.6;
——變速器1擋傳動比;
——主減速比。
已知:;; ;
計算結果:
在設計時,全浮式半軸桿部直徑的初步選取可按下式進行:
(5-2)
出于對安全系數以及半軸強度的較核的考慮,取
式中——半軸桿部直徑,;
——半軸的計算轉矩,;
——半軸扭轉許用應力,。
全浮式半軸支承轉矩,其計算轉矩為:
(5-3)
三種半軸的扭轉應力由下式計算:
(5-4)
式中——半軸的扭轉應力,;
—一半軸的計算轉矩,;
——半軸桿部直徑,。
將數據帶入式(5-3)、(5-4)得:
半軸花鍵的剪切應力為
(5-5)
半軸花鍵的擠壓應力為
(5-6)
式中——半軸承受的最大轉矩,;
(5-7)[8]
式中:——半軸承受的最大扭矩;
——半軸花鍵(軸)外徑, ;
——相配合花鍵孔內徑, ;
——花鍵齒數,
——花鍵齒寬,
——載荷分布不均勻系數,取0.75;
——花鍵工作長度,取45mm;
——許用應力,為75;
代入公式:。
所以花鍵強度合格。
半軸計算時的許用應力與所選用的材料、加工方法、熱處理工藝及汽車的使用條件有關。當采用40Cr,40MnB,40MnVB,40CrMnMo,40號及45號鋼等作為全浮式半軸的材料時,其扭轉屈服極限達到784MPa左右。在保證安全系數在1.3~1.6范圍時,半軸扭轉許用應力可取為。
對于越野汽車、礦用汽車等使用條件差的汽車,應該取較大的安全系數,這時許用應力應取小值;對于使用條件較好的公路汽車則可取較大的許用應力。
當傳遞最大轉矩時,半軸花鍵的剪切應力不應超過71.05 ;擠壓應力不應該超過,半軸單位長度的最大轉角不應大于。
5.3 半軸的結構設計及材料與熱處理
為了使半軸的花鍵內徑不小于其桿部直徑,常常將加工花鍵的端部做得粗些,并適當地減小花鍵槽的深度,因此花鍵齒數必須相應地增加,通常取10齒(轎車半軸)至18齒(載貨汽車半軸)。半軸的破壞形式多為扭轉疲勞破壞,因此在結構設計上應盡量增大各過渡部分的圓角半徑以減小應力集中。重型車半軸的桿部較粗,外端突緣也很大,當無較大鍛造設備時可采用兩端均為花鍵聯(lián)接的結構,且取相同花鍵參數以簡化工藝。在現(xiàn)代汽車半軸上,漸開線花鍵用得較廣,但也有采用矩形或梯形花鍵的。
半軸多采用含鉻的中碳合金鋼制造,如40Cr,40CrMnMo,40CrMnSi,40CrMoA,35CrMnSi,35CrMnTi等。40MnB是我國研制出的新鋼種,作為半軸材料效果很好。半軸的熱處理過去都采用調質處理的方法,調質后要求桿部硬度為HB388—444(突緣部分可降至HB248)。近年來采用高頻、中頻感應淬火的口益增多。這種處理方法使半軸表面淬硬達HRC52~63,硬化層深約為其半徑的1/3,心部硬度可定為HRC30—35;不淬火區(qū)(突緣等)的硬度可定在HB248~277范圍內。由于硬化層本身的強度較高,加之在半軸表面形成大的殘余壓應力,以及采用噴丸處理、滾壓半軸突緣根部過渡圓角等工藝,使半軸的靜強度和疲勞強度大為提高,尤其是疲勞強度提高得十分顯著。由于這些先進工藝的采用,不用合金鋼而采用中碳(40號、45號)鋼的半軸也日益增多。
本章小結
本章主要對驅動橋的半軸的型式進行選擇,對半軸進行設計與計算,對半軸的材料進行選擇。
第6章 驅動橋殼設計
驅動橋橋殼是汽車上的主要零件之一,非斷開式驅動橋的橋殼起著支承汽車荷重的作用,并將載荷傳給車輪.作用在驅動車輪上的牽引力,制動力、側向力和垂向力也是經過橋殼傳到懸掛及車架或車廂上。因此橋殼既是承載件又是傳力件,同時它又是主減速器、差速器及驅動車輪傳動裝置(如半軸)的外殼。
在汽車行駛過程中,橋殼承受繁重的載荷,設計時必須考慮在動載荷下橋殼有足夠的強度和剛度。為了減小汽車的簧下質量以利于降低動載荷、提高汽車的行駛平順性,在保證強度和剛度的前提下應力求減小橋殼的質量.橋殼還應結構簡單、制造方便以利于降低成本。其結構還應保證主減速器的拆裝、調整、維修和保養(yǎng)方便。在選擇橋殼的結構型式時,還應考慮汽車的類型、使用要求、制造條件、材料供應等。
6.1橋殼的結構型式
橋殼的結構型式大致分為可分式
(a)可分式橋殼
可分式橋殼的整個橋殼由一個垂直接合面分為左右兩部分,每一部分均由一個鑄件殼體和一個壓入其外端的半軸套管組成。半軸套管與殼體用鉚釘聯(lián)接。在裝配主減速器及差速器后左右兩半橋殼是通過在中央接合面處的一圈螺栓聯(lián)成一個整體。其特點是橋殼制造工藝簡單、主減速器軸承支承剛度好。但對主減速器的裝配、調整及維修都很不方便,橋殼的強度和剛度也比較低。過去這種所謂兩段可分式橋殼見于輕型汽車,由于上述缺點現(xiàn)已很少采用。
(b)整體式橋殼
整體式橋殼的特點是將整個橋殼制成一個整體,橋殼猶如一整體的空心粱,其強度及剛度都比較好。且橋殼與主減速器殼分作兩體,主減速器齒輪及差速器均裝在獨立的主減速殼里,構成單獨的總成,調整好以后再由橋殼中部前面裝入橋殼內,并與橋殼用螺栓固定在一起。使主減速器和差速器的拆裝、調整、維修、保養(yǎng)等都十分方便。
整體式橋殼按其制造工藝的不同又可分為鑄造整體式、鋼板沖壓焊接式和鋼管擴張成形式三種。
6.2 橋殼的受力分析及強度計算
我國通常推薦:計算時將橋殼復雜的受力狀況簡化成三種典型的計算工況(與前述半軸強度計算的三種載荷工況相同)。
當牽引力或制動力最大時,橋殼鋼板彈簧座處危險端面的彎曲應力和扭轉應力為:
(6-1)
(6-2)
式中——地面對車輪垂直反力在橋殼板簧座處危險端面引起的垂直平面內的彎矩,;
——橋殼板簧座到車輪面的距離;
——牽引力或制動力(一側車輪上的)在水平平面內引起的彎矩,;
——牽引或制動時,上述危險斷面所受的轉矩,;
、——分別為橋殼危險斷面垂直平面和水平面彎曲的抗彎截面系數;
——危險斷面的抗扭截面系數。
將數據帶入式(6-2)、(6-3)得:
橋殼許用彎曲應力為,許用扭轉應力為??慑懺鞓驓と≥^小值,鋼板沖壓焊接橋殼取最大值。
本章小結
本章主要對橋殼的結構型式進行分析,橋殼的受力分析以及強度計算。
結論
本課題設計的JX1090貨車驅動橋,采用非斷開式驅動橋,由于結構簡單、主減速器造價低廉、工作可靠,可以被廣泛用在各種中型載貨汽車。
設計了后橋驅動的結構形式和介紹了工作原理,計算了差速器、主減速器以及半軸的結構尺寸,進行了強度校核,并繪制了有關零件圖和裝配圖。
本驅動橋設計結構合理,符合實際應用,具有很好的動力性和經濟性,驅動橋總成及零部件的設計能盡量滿足零件的標準化、部件的通用化和產品的系列化及汽車變型的要求,修理、保養(yǎng)方便,機件工藝性好,制造容易。
但此設計過程仍有許多不足,在設計結構尺寸時,有些設計參數是按照以往經驗值得出,這樣就帶來了一定的誤差。另外,在一些小的方面,由于時間問題,做得還不夠仔細,懇請各位老師同學給予批評指正。
致謝
為期三個月的畢業(yè)設計生活結束了,回頭看看自己在這幾個月內的身影,回頭看看自己走過的路,有辛酸也有甘甜,總的來說收獲不少。
本次設計的課題是:JX1090貨車驅動橋的設計,這對我們來說完全是一個新的課題,免不了有時感到很茫然。通過到工廠里去看實物,通過指導老師謝老師的講解,加上自己看書,終于把設計的思路搞清楚了。對于具體的細節(jié)問題,涉及到一些經驗方面的問題,指導老師總是不厭其煩的講解,直到我聽懂為止,我被謝老師的這種敬業(yè)精神深深感動。
通過這次畢業(yè)設計,使我將三年半來學到的知識進行了一次大總結,一次大檢查,特別是機械設計、工程制圖、機械原理等基礎知識,進行了一次徹底的復習。以前只是應付考試,現(xiàn)在要自己設計一個產品出來,才感覺到自己學的知識是遠遠不夠的。有句話叫做:活到老,學到老。說的是一點沒錯啊!處處有我的恩師,處處有我要學習的知識!
通過這次畢業(yè)設計,使我查手冊的能力得到了很大的提高。以前遇到問題不是去問老師,就是跳過去,一點自己查資料的意識都沒有?,F(xiàn)在不同了,通過指導老師的引導,通過自己的實踐,現(xiàn)在可以獨立到圖書館去查資料,而且要查哪方面的資料,心理非常清楚,不像以前那么沒有頭緒了。
在其他