喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有,圖紙均為CAD原圖,有疑問咨詢QQ:414951605 或1304139763
鎮(zhèn) 江 高 專
ZHENJIANG COLLEGE
畢 業(yè) 設(shè) 計 (論 文)
鉆、鏜兩用組合機床液壓系統(tǒng)設(shè)計
Design of Hydraulic System for Drilling and Boring Machine
系 名: (四號宋體)
專業(yè)班級: (四號宋體)
學生姓名: (四號宋體)
學 號: (四號宋體)
指導教師姓名: (四號宋體)
指導教師職稱: (四號宋體)
年 月
27
摘 要
本課題研究的主要內(nèi)容是臥式單面鉆鏜兩用組合機床液壓系統(tǒng)設(shè)計。液壓系統(tǒng)的設(shè)計是整個機器設(shè)計的一部分,它的任務(wù)是根據(jù)機器的用途、特點和要求,利用液壓傳動的基本原理,擬定出合理的液壓系統(tǒng)圖,再經(jīng)過必要的計算來確定液壓系統(tǒng)的參數(shù),然后按照這些參數(shù)來選用液壓元件的規(guī)格和進行系統(tǒng)的結(jié)構(gòu)設(shè)計,最后對液壓系統(tǒng)的主要性能進行驗算。作為現(xiàn)代機械設(shè)備實現(xiàn)傳動與控制的重要技術(shù)手段,液壓技術(shù)在國民經(jīng)濟各領(lǐng)域得到了廣泛的應(yīng)用。與其他傳動控制技術(shù)相比,液壓技術(shù)具有能量密度高﹑配置靈活方便﹑調(diào)速范圍大﹑工作平穩(wěn)且快速性好﹑易于控制并過載保護﹑易于實現(xiàn)自動化和機電液一體化整合﹑系統(tǒng)設(shè)計制造和使用維護方便等多種顯著的技術(shù)優(yōu)勢,因而使其成為現(xiàn)代機械工程的基本技術(shù)構(gòu)成和現(xiàn)代控制工程的基本技術(shù)要素。
關(guān)鍵字:滑臺液壓系統(tǒng);液壓系統(tǒng);液壓元件; 性能
Abstract
As an important technical means of modern machinery and equipment to achieve transmission and control of hydraulic technology in all areas of the national economy has been widely used. Compared with other transmission control technology, hydraulic technology with high energy density configuration flexibility steady speed range, good work and quick and easy to control and overload protection easy to automate and integrate ﹑ hydraulic integrated system design and manufacturing and maintenance of a variety of significant technological advantage and convenient, thus making it essential technical elements constitute the basic technology and modern control engineering, modern mechanical engineering.
The main contents of this research is two-sided hole drilled through the combination of horizontal hydraulic machine power sliding feed system design. The design of the hydraulic system is part of the machine design, and its mission is based on the use, characteristics and requirements of the machine, using the basic principles of hydraulic transmission, hydraulic system to work out a reasonable figure, and then after the necessary calculations to determine the parameters of the hydraulic system then follow these parameters to choose the specifications of hydraulic components and structural design of the system, and finally to the main performance hydraulic system checking.
Keywords: hydraulic components;; slipway hydraulic system; hydraulic system performance
目錄
目 錄
摘 要 I
Abstract II
目 錄 1
1 緒論 1
2 方案討論及總體設(shè)計 2
3 液壓系統(tǒng)的功能原理計算 3
3.1液壓缸液壓系統(tǒng)設(shè)計要求分析 3
3.2 負載分析 4
3.2.1 工作負載 4
3.2.2 摩擦負載 4
3.2.3 慣性負載 4
3.2.4 液壓缸在各階段的負載值 5
3.2.5 負載圖與速度圖的繪制 5
3.3 液壓缸主要參數(shù)的確定 6
3.4 計算和確定2個液壓缸的主要尺寸 6
3.5 制定液壓回路方案,擬定液壓系統(tǒng)原理圖 16
3.6 計算與選擇液壓元件 17
3.6.1 液壓泵及驅(qū)動電機計算與選定 17
3.6.2 液壓控制閥和液壓輔助元件的選定 18
3.6.3油管的選擇 19
3.6.4液壓系統(tǒng)的驗算 22
4結(jié)論與展望 26
4.1結(jié)論 26
4.2不足之處及未來展望 26
致 謝 27
參考文獻 28
1 緒論
1 緒論
組合機床是由大量的通用部件為基礎(chǔ),配以少量專用部件組成的一種高效專用機床。它能對一種或幾種零件進行多刀、多軸、多面、多工位加工,在組合機床上可以完成鉆孔、擴孔、鉸孔、鏜孔、攻絲、車削、銑削、磨削及滾壓等工序;生產(chǎn)效力高,加工質(zhì)量穩(wěn)定。其組成是:床身(側(cè)底座)、底座(中間底座、立柱底座)、動力滑臺、夾具、動力箱、多軸箱、立拄、墊鐵、液壓裝置、電器控制設(shè)備、刀具等。
總體方案設(shè)計主要包括制定工藝方案(確定零件在組合機床完成的工藝內(nèi)容及加工方法,選擇定位基準和夾緊部位,決定工步和刀具結(jié)構(gòu)形式、種類及切削用量等)、確定機床裝配形式、制定影響機床總體布局和技術(shù)性能的主要部件的結(jié)構(gòu)方案。
根據(jù)題目要求,該組合機床采用液壓滑臺驅(qū)動,實現(xiàn)進給運動。本設(shè)計為鉆雙面孔,分析可知,其加工為單工位的平面加工,且其加工的精度要求不是不高,生產(chǎn)需要為大批大量生產(chǎn),故該組合機床的通用部件使用大型部件。
\液壓傳動系統(tǒng)是臥式單面鉆鏜兩用組合機床機械的一個組成部分,液壓傳動系統(tǒng)的設(shè)計要同主機的總體設(shè)計同時進行。著手設(shè)計時,必須從實際情況出發(fā),有機地結(jié)合各種傳動形式,充分發(fā)揮液壓傳動的優(yōu)點,力求設(shè)計出結(jié)構(gòu)簡單、工作可靠、成本低、效率高、操作簡單、維修方便的液壓傳動系統(tǒng)。
2 方案討論及總體設(shè)計
臥式單面鉆鏜兩用組合機床液壓系統(tǒng)設(shè)計,完成工件的加進——工作臺快進——工作臺工進——工作臺快退——工件松開。設(shè)計一套液壓系統(tǒng),能完成快進-工進-死擋鐵停留-快退-原位停止的工作循環(huán),并完成工件的定位與夾緊。機床的快進速度為5m/min,快退速度與快進速度相等。工進要求是:能在20~100mm/min范圍內(nèi)無級調(diào)速。最大行程為500mm,工進行程為300mm。最大切削力為12000N。運動部件自重為20000N。導軌水平放置。工件所需夾緊力不得超過6500N,最小不低于4000N。夾緊缸的行程為50mm,由松開到夾緊的時間△t1=1s,啟動換向時間△t2=0. 2s。
本題目為新課題,培養(yǎng)學生綜合應(yīng)用所學知識,結(jié)合實踐知識,初步具有設(shè)計一個中等復(fù)雜液壓系統(tǒng)的能力。
3 液壓系統(tǒng)的功能原理計算
3 液壓系統(tǒng)的功能原理計算
液壓系統(tǒng)設(shè)計是指組成一個新的能量傳遞系統(tǒng),以完成一項專門的任務(wù)。系統(tǒng)功能原理設(shè)計是根據(jù)主機的工藝目的或用途、工作循環(huán)、負載條件和主要技術(shù)要求,通過配置執(zhí)行元件,負載分析、運動分析及編制執(zhí)行元件的工況圖,對同類主機及其傳動系統(tǒng)的分析比較,選擇設(shè)計參數(shù),確定液壓系統(tǒng)的工作壓力、流量和執(zhí)行元件主要幾何參數(shù)等,擬定液壓系統(tǒng)方案和傳動系統(tǒng)原理圖,并對組成系統(tǒng)的各標準液壓元件輔件進行選型,最后對液壓系統(tǒng)的主要性能(壓力損失、發(fā)熱溫升等)進行驗算。
3.1液壓缸液壓系統(tǒng)設(shè)計要求分析
設(shè)計題目
設(shè)計工作循環(huán)為:快進→工進→快退→停止。
1.已知參數(shù)
設(shè)計一滑臺的液壓系統(tǒng),實現(xiàn)的工作循環(huán)是:快進→工進→快退→停止。根據(jù)前述說明,假設(shè)主要性能參數(shù)與性能要求如下: 臥式單面鉆鏜兩用組合機床液壓系統(tǒng)設(shè)計,完成工件的加進——工作臺快進——工作臺工進——工作臺快退——工件松開。設(shè)計一套液壓系統(tǒng),能完成快進-工進-死擋鐵停留-快退-原位停止的工作循環(huán),并完成工件的定位與夾緊。機床的快進速度為5m/min,快退速度與快進速度相等。工進要求是:能在20~100mm/min范圍內(nèi)無級調(diào)速。最大行程為500mm,工進行程為300mm。最大切削力為12000N。運動部件自重為20000N。導軌水平放置。工件所需夾緊力不得超過6500N,最小不低于4000N。夾緊缸的行程為50mm,由松開到夾緊的時間△t1=1s,啟動換向時間△t2=0. 2s。
2 明確設(shè)計要求
該液壓系統(tǒng)的功率較大,空行程和加壓行程速度差異較大,因此要求功率利用合理。且該系統(tǒng)的壓制力較大,因此對于工作的平穩(wěn)性、安全性要求較大。
3 設(shè)計方案
根據(jù)已知參數(shù)和表2-1所示液壓系統(tǒng)工作臺的執(zhí)行元件為單桿活塞缸,
活塞桿
3.2 負載分析
3.2.1 工作負載
工作負載Fe 液壓缸的常見工作負載有重力、切削力、擠壓力等。阻力負載為正,超越負載為負。
運動部件自重20000N,最大切削力為12000N
3.2.2 摩擦負載
假設(shè)靜摩擦系數(shù)fs=0.2,動摩擦系數(shù)fd=0.1
3.2.3 慣性負載
慣性負載Fi 慣性負載時運動部件在啟動和制動過程中的慣性力,其平均值可按下式計算 Fi =G/g*?v/?t (N)
式中 g=重力加速度, m/s2,g=9.8m/s2
?v=速度變化量, m/s2
?t=啟動或制動時間,s 一般機械?t =0.1~0.5s,
3.2.4 液壓缸在各階段的負載值
(1) 查液壓缸的機械效率,可計算出液壓缸在各工作階段的負載情況,如下表表1所示:
表1 液壓缸各階段的負載情況
工 況
負載計算公式
液壓缸負載
啟 動
4000
加 速
3020.4
快 進
2000
工 進
14000
快 退
2000
3.2.5 負載圖與速度圖的繪制
根據(jù)工況負載和以知速度和及行程S,可繪制負載圖和速度圖,如下圖(圖1、圖2)所示:
圖1(負載循環(huán)圖)
圖2(速度循環(huán)圖)
3.3 液壓缸主要參數(shù)的確定
(1)液壓缸的內(nèi)徑和活塞桿的內(nèi)徑
表3-1 按負載選擇工作壓力[1]
負載/ KN
<5
5~10
10~20
20~30
30~50
>50
工作壓力/MPa
< 0.8~1
1.5~2
2.5~3
3~4
4~5
≥5
表3-2 各種機械常用的系統(tǒng)工作壓力[1]
機械類型
機 床
農(nóng)業(yè)機械
工程機械
組合機床機械
液壓鑿巖機
大中型挖掘機
重型機械
起重運輸機械
磨床
銑床
龍門
刨床
拉床
工作壓力/MPa
0.8~2
3~5
2~8
8~10
10~18
20~32
①初選系統(tǒng)壓力P=16Mpa
3.4 計算和確定2個液壓缸的主要尺寸
1 液壓缸缸徑的計算
內(nèi)徑D可按下列公式初步計算:
液壓缸的負載為推力
工進油缸 式(3-1)
夾緊油缸 式(3-1)
式中F—液壓缸實際使用推力22400(N)(最大負載的情況下);
—液壓缸的供油壓力,一般為系統(tǒng)壓力(MPa)
本次設(shè)計中液壓缸已知系統(tǒng)壓力=16MPa;
故根據(jù)實際需要(考慮超載因素),查滑臺缸筒內(nèi)徑系列/mm(GB/T 2348-1993)可以取為50mm。
液壓氣動系統(tǒng)及元件 缸內(nèi)徑及活塞桿外徑 標準編號:GB/T 2348-1993
表 GB/T 2348-1993 直徑系列
直徑系列/mm
(GB/T 2348-1993)
4、5、6、8、10、12、16、18、20、22、25、28、32、36、40、45、50、56、63、70、80、90、100、110、125、140、160、180、200、220、250、280、320、360
④根據(jù)下表3-1:
由于快進速度和快退速度相等,屬于差動連接,
可以得到d=0.707D,
代入計算并取標準直得d=35mm,根據(jù)標準系列,取d=35mm
2活塞寬度的確定
活塞的寬度一般取=(0.6-1.0)
即=(0.6-1.0)×50=(30-50)mm
取=40mm
3缸體長度的確定
液壓缸缸體內(nèi)部的長度應(yīng)等于活塞的行程與活塞寬度的和。缸體外部尺寸還要考慮到兩端端蓋的厚度,一般液壓缸缸體的長度不應(yīng)大于缸體內(nèi)徑的20-30倍。
即:缸體內(nèi)部長度快進行程L1=50mm,工進行程L2=200mm
總行程L= L1+ L2=250 mm
4缸筒壁厚的計算
在中、低壓系統(tǒng)中,液壓缸的壁厚基本上由結(jié)構(gòu)和工藝上的要求確定,壁厚通常都能滿足強度要求,一般不需要計算。但是,當液壓缸的工作壓力較高和缸筒內(nèi)徑較大時,必須進行強度校核。
當時,稱為薄壁缸筒,按材料力學薄壁圓筒公式計算,計算公式為
式(3-2)
式中,—缸筒內(nèi)最高壓力;
—缸筒材料的許用壓力。=, 為材料的抗拉強度,n為安全系數(shù),當時,一般取。
當時,按式(3-3)計算
(該設(shè)計采用無縫鋼管) 式(3-3)
根據(jù)缸徑查手冊預(yù)取=30
此時
最高允許壓力一般是額定壓力的1.5倍,根據(jù)給定參數(shù),所以:
=161.5=24MP
[]=100~110(無縫鋼管),取[]=100,其壁厚按公式(3-3)計算為
滿足要求,就取壁厚為5mm。
5 活塞桿強度和液壓缸穩(wěn)定性計算
A.活塞桿強度計算
活塞桿的直徑按下式進行校核
式中,為活塞桿上的作用力;
為活塞桿材料的許用應(yīng)力,=,n一般取1.40。
滿足要求
B.液壓缸穩(wěn)定性計算
活塞桿受軸向壓縮負載時,它所承受的力不能超過使它保持穩(wěn)定工作所允許的臨界負載,以免發(fā)生縱向彎曲,破壞液壓缸的正常工作。的值與活塞桿材料性質(zhì)、截面形狀、直徑和長度以及液壓缸的安裝方式等因素有關(guān)。若活塞桿的長徑比且桿件承受壓負載時,則必須進行液壓缸穩(wěn)定性校核?;钊麠U穩(wěn)定性的校核依下式進行
式中,為安全系數(shù),一般取=2~4。
a.當活塞桿的細長比時
b.當活塞桿的細長比時
式中,為安裝長度,其值與安裝方式有關(guān),見表1;為活塞桿橫截面最小回轉(zhuǎn)半徑,;為柔性系數(shù),其值見表3-2; 為由液壓缸支撐方式?jīng)Q定的末端系數(shù),其值見表1;為活塞桿材料的彈性模量,對鋼取;為活塞桿橫截面慣性矩;為活塞桿橫截面積;為由材料強度決定的實驗值,為系數(shù),具體數(shù)值見表3-3。
表3-2液壓缸支承方式和末端系數(shù)的值
支承方式
支承說明
末端系數(shù)
一端自由一端固定
1/4
兩端鉸接
1
一端鉸接一端固定
2
兩端固定
4
表3-3 、、的值
材料
鑄鐵
5.6
1/1600
80
鍛鐵
2.5
1/9000
110
鋼
4.9
1/5000
85
c.當時,缸已經(jīng)足夠穩(wěn)定,不需要進行校核。
此設(shè)計安裝方式中間固定的方式,此缸已經(jīng)足夠穩(wěn)定,不需要進行穩(wěn)定性校核。
6缸筒壁厚的驗算
下面從以下三個方面進行缸筒壁厚的驗算:
A液壓缸的額定壓力值應(yīng)低于一定的極限值,保證工作安全:
式(3-4)
根據(jù)式(3-4)得到:
顯然,額定油壓==16MP,滿足條件;
B為了避免缸筒在工作時發(fā)生塑性變形,液壓缸的額定壓力值應(yīng)與塑性變形壓力有一定的比例范圍:
式(3-5)
式(3-6)
先根據(jù)式(3-6)得到:
=41.21
顯然,滿足條件;
C耐壓試驗壓力,是液壓缸在檢查質(zhì)量時需承受的試驗壓力。在規(guī)定的時間內(nèi),液壓缸在此壓力 下,全部零件不得有破壞或永久變形等異常現(xiàn)象。
各國規(guī)范多數(shù)規(guī)定:
當額定壓力時
(MPa)
D為了確保液壓缸安全的使用,缸筒的爆裂壓力應(yīng)大于耐壓試驗壓力:
(MPa) 式(3-7)
因為查表已知=596MPa,根據(jù)式(3-7)得到:
至于耐壓試驗壓力應(yīng)為:
因為爆裂壓力遠大于耐壓試驗壓力,所以完全滿足條件。
以上所用公式中各量的意義解釋如下:
式中: —缸筒內(nèi)徑();
—缸筒外徑();
—液壓缸的額定壓力()
—液壓缸發(fā)生完全塑形變形的壓力();
—液壓缸耐壓試驗壓力();
—缸筒發(fā)生爆破時壓力();
—缸筒材料抗拉強度();
—缸筒材料的屈服強度(;
—缸筒材料的彈性模量();
—缸筒材料的泊桑系數(shù)
鋼材:=0.3
7缸筒的加工要求
缸筒內(nèi)徑采用H7級配合,表面粗糙度為0.16,需要進行研磨;
熱處理:調(diào)制,HB240;
缸筒內(nèi)徑的圓度、錐度、圓柱度不大于內(nèi)徑公差之半;
剛通直線度不大于0.03mm;
油口的孔口及排氣口必須有倒角,不能有飛邊、毛刺;
在缸內(nèi)表面鍍鉻,外表面刷防腐油漆。
8法蘭設(shè)計
液壓缸的端蓋形式有很多,較為常見的是法蘭式端蓋。本次設(shè)計選擇法蘭式端蓋
(缸筒端部)法蘭厚度根據(jù)下式進行計算:
式(3-8)
式中, -法蘭厚度(m);
—密封環(huán)內(nèi)經(jīng)d=40mm(m);
密封環(huán)外徑(m);=50mm
系統(tǒng)工作壓力(pa);=7MPa
附加密封力(Pa);值取其材料屈服點353MPa;
螺釘孔分布圓直徑(m);=55mm
密封環(huán)平均直徑(m);=45mm
法蘭材料的許用應(yīng)力(Pa);[]=/n=353/5=70.6MPa
—法蘭受力總合力(m)
所以=13.2mm
為了安全取=14mm
9缸筒端部)法蘭連接螺栓的強度計算
連接圖如下:
圖3-1缸體端部法蘭用螺栓連接
1-前端蓋;2-缸筒
螺栓強度根據(jù)下式計算:
螺紋處的拉應(yīng)力:
(MPa) 式(3-9)
螺紋處的剪應(yīng)力
(MPa) 式(3-10)
合成應(yīng)力
(MPa) 式(3-11)
式中, —液壓缸的最大負載,=A,單桿時,雙桿是
—螺紋預(yù)緊系數(shù),不變載荷=1.25~1.5,變載荷=2.5~4;
—液壓缸內(nèi)徑;
—缸體螺紋外徑;
—螺紋內(nèi)經(jīng);
—螺紋內(nèi)摩擦因數(shù),一般取=0.12;變載荷取=2.5~4;
—材料許用應(yīng)力,,為材料的屈服極限,n為安全系數(shù),一般取n=1.2~1.5;
Z—螺栓個數(shù)。
最大推力為:
使用4個螺栓緊固缸蓋,即:=4
螺紋外徑和底徑的選擇:
=10mm =8mm
系數(shù)選擇:選取=1.3=0.12
根據(jù)式(3-9)得到螺紋處的拉應(yīng)力為:
=
根據(jù)式(3-10)得到螺紋處的剪應(yīng)力為:
根據(jù)式(3-11)得到合成應(yīng)力為:
==367.6MPa
由以上運算結(jié)果知,應(yīng)選擇螺栓等級為12.9級;
查表的得:抗拉強度極限=1220MP;屈服極限強度=1100MP;
不妨取安全系數(shù)n=2
可以得到許用應(yīng)力值:[]=/n=1100/2=550MP
證明選用螺栓等級合適。
10密封件的選用
A.對密封件的要求
在液壓元件中,液壓缸的密封要求是比較高的,特別是一些特殊液壓缸,如擺動液壓缸等。液壓缸不僅有靜密封,更多的部位是動密封,而且工作壓力高,這就要求密封件的密封性能要好,耐磨損,對溫度的適應(yīng)范圍大,要求彈性好,永久變形小,有適當?shù)臋C械強度,摩擦阻力小,容易制造和裝拆,能隨壓力的升高而提高密封能力和利于自動補償磨損。密封件一般以斷面形狀分類,有O形、Y形、U形、V形和Yx形等。除O形外,其他都屬于唇形密封件。
B. O形密封圈的選用
液壓缸的靜密封部位主要有活塞內(nèi)孔與活塞桿、支撐座外圓與缸筒內(nèi)孔、端蓋與缸體端面等處。靜密封部位使用的密封件基本上都是O形密封圈。
C.動密封部位密封圈的選用
由于O型密封圈用于往復(fù)運動存在起動阻力大的缺點,所以用于往復(fù)運動的密封件一般不用O形圈,而使用唇形密封圈或金屬密封圈。
液壓缸動密封部位主要有活塞與缸筒內(nèi)孔的密封、活塞桿與支撐座(或?qū)蛱祝┑拿芊獾取?
活塞環(huán)是具有彈性的金屬密封圈,摩擦阻力小,耐高溫,使用壽命長,但密封性能差,內(nèi)泄漏量大,而且工藝復(fù)雜,造價高。對內(nèi)泄漏量要求不嚴而要求耐高溫的液壓缸,使用這種密封圈較合適。
V形圈的密封效果一般,密封壓力通過壓圈可以調(diào)節(jié),但摩擦阻力大,溫升嚴重。因其是成組使用,模具多,也不經(jīng)濟。對于運動速度不高、出力大的大直徑液壓缸,用這種密封圈較好。
U形圈雖是唇形密封圈,但安裝時需用支撐環(huán)壓住,否則就容易卷唇,而且只能在工作壓力低于10MPa時使用,對壓力高的液壓缸不適用。
比較而言,能保證密封效果,摩擦阻力小,安裝方便,制造簡單經(jīng)濟的密封圈就屬Yx型密封圈了。它屬于不等高雙唇自封壓緊式密封圈 ,分軸用和孔用兩種。
綜上,所以本設(shè)計選用Yx型圈,聚氨酯和聚四氟乙烯密封材料組合使用,可以顯著提高密封性能:
a.降低摩擦阻力,無爬行現(xiàn)象;
b.具有良好的動態(tài)和靜態(tài)密封性,耐磨損,使用壽命長;
c.安裝溝槽簡單,拆裝簡便。
這種組合的特別之處就是允許活塞外園和缸筒內(nèi)壁有較大間隙,因為組合式密封的密封圈能防止擠入間隙內(nèi),降低了活塞與缸筒的加工要求,密封方式圖如下:
圖3-2 密封方式圖
3.5 制定液壓回路方案,擬定液壓系統(tǒng)原理圖
液壓系統(tǒng)的設(shè)計是整個機器設(shè)計的一部分,它的任務(wù)是根據(jù)機器的用途、特點和要求,利用液壓傳動的基本原理,擬定出合理的液壓系統(tǒng)圖,在經(jīng)過必要的計算來確定液壓系統(tǒng)的參數(shù),然后按照這些參數(shù)來選用液壓元件的規(guī)格和進行系統(tǒng)的結(jié)構(gòu)設(shè)計。根據(jù)對機器的工作情況進行詳細的分析,該機床需要快進、工進和快退三步一次進給運動。其工作過程由液壓系統(tǒng)來實現(xiàn)。液壓滑臺是由滑臺、滑座及油缸三部分組成,液壓滑臺是通過電氣控制由夜壓系統(tǒng)來實現(xiàn)的?;_的工進速度由節(jié)流閥調(diào)節(jié),可實現(xiàn)無級調(diào)速。電氣控制電路一般采用行程、時間原則及壓力控制方式。
具有一次進給的液壓動力滑臺電氣控制電路如圖所示:
電磁鐵
YA1
YA2
YA3
轉(zhuǎn)換主令
快進
+
-
+
SB5
工進
+
-
-
SB6
快退
-
+
-
SB7
停止
-
-
-
SB2
3.5.1 滑臺原位停止
滑臺由油缸YG拖動前后進給,電磁鐵YA1、YA2、YA3均為斷電狀態(tài),滑臺原位停止。
3.5.2 滑臺快進
按下SB0按扭, YA1、YA3電磁鐵得電,將電磁閥1HF及2HF推向右端,于是泵壓出的壓力油經(jīng)1HF流入滑臺油缸左腔,右腔流出的油經(jīng)1HF、2HF也流入左腔構(gòu)成差動快速回路使滑臺快進。
3.5.3 滑臺工進
當擋鐵壓動行程開關(guān)SQ1, YA3斷電,電磁閥2HF復(fù)位,滑臺右腔流出的油只能經(jīng)節(jié)流閥流入油箱,滑臺轉(zhuǎn)為工進。
3.5.4 滑臺快退
當滑臺工進到終點, YA2得電,使電磁閥1HF推向左,變量泵壓出的壓力油經(jīng)1HF流入滑臺油缸右腔,左腔流出的油經(jīng)1HF直接流入油箱,滑臺快退。
在上述電路中,若需要使滑臺工進到終點,延時停留,即工作循環(huán)成為:快進工進延時停留快退。
圖3-2液壓滑臺液壓系統(tǒng)原理圖
3.6 計算與選擇液壓元件
3.6.1 液壓泵及驅(qū)動電機計算與選定
(1)、液壓泵的選擇
液壓泵的最高工作壓力計算
由工況圖4-1可以查得液壓缸的最高工作壓力出現(xiàn)在工進階段,即由于進油路元件較少,故泵至缸間的進油路壓力損失估取為。則液壓泵的最高工作壓力為
所需的液壓泵最大供油量qp按液壓缸的最大輸入流量估算。取泄漏系數(shù)K=1.1則
qp=1.1* 18.4=20.24(L/min)
暫取泵的容積效率?v=0.90可算得泵的排量參考值為 Vg=1000qv/n?v=1000*20.24/1500*0.9=14.9mL/r
根據(jù)以上計算結(jié)果查閱產(chǎn)品樣本,選用規(guī)格相近的25YCY14—1B壓力補償變量型斜盤式軸向柱塞泵,其額定壓力Pn=32Mpa,V=25mL/r,n=1500r/min,容積效率?v=0.92,qp=Vn?v=25*1500*0.92=34.5L/min,符合系統(tǒng)對流量的要求
(2)、電動機的選擇
固定設(shè)備的液壓系統(tǒng),其液壓泵通常用電動機驅(qū)動。
根據(jù)算出的功率和液壓泵的轉(zhuǎn)速及其使用環(huán)境,從產(chǎn)品樣本或手冊中選定其型號規(guī)格[額定功率、轉(zhuǎn)速、電源、結(jié)構(gòu)形式(立式、臥式,開式、封閉式的等)],并對其進行核算,以保證每個工作階段電動機的峰值超載量都低于25%。
由于液壓泵通常在空載下啟動,故對電動機的啟動轉(zhuǎn)矩沒有過高的要求,負荷變化比較平穩(wěn),啟動次數(shù)不多,故可采用籠型三相異步電動機。但若液壓系統(tǒng)功率較大而電網(wǎng)容量不大時,可采用繞線轉(zhuǎn)子電動機。對于采用變頻調(diào)節(jié)流量方案的液壓泵,則應(yīng)采用變頻調(diào)速或電磁調(diào)速控制的交流異步電動機驅(qū)動液壓泵。
由工況圖知,最大功率出現(xiàn)在終壓階段t=0.395s時,由此時的液壓缸工作壓力和流量可算得此時液壓泵的最大理論功率
Pt=(p+?p)Kq=(8+0.5)*(1.1*4.7)/60=0.73Kw
取泵的總效率為?p=0.85,則算得液壓泵驅(qū)動功率為
Pp=Pt/?p=0.73/0.85=0.86Kw
查手冊,選用規(guī)格相近的Y90L1—4型封閉式三相異步電動機,轉(zhuǎn)速1440r/min,額定功率為1.5Kw。
按所選電動機轉(zhuǎn)速和液壓泵的排量,液壓泵的最大實際流量為
大于計算所需流量20.24L/min,滿足使用要求。
3.6.2 液壓控制閥和液壓輔助元件的選定
根據(jù)所選擇的液壓泵規(guī)格和系統(tǒng)的工作情況,容易選擇系統(tǒng)的其他液壓元件,一并列入表8-1
序號
元件名稱
估計通過流量
型號
規(guī)格
1
斜盤式柱塞泵
25
25YCY14-1B
32Mpa,驅(qū)動功率24.6KN
2
WU網(wǎng)式濾油器
25
WU-25*180
15通徑,壓力損失0.01MPa
3
直動式溢流閥
12
YEF-10B
10通徑,32Mpa,板式聯(lián)接
4
背壓閥
63
YF3-10B
10通徑,21Mpa,板式聯(lián)接
5
二位二通手動電磁閥
80
22EF3-E10B
6
三位四通電磁閥
60
34F3-Ea6B
6通徑,壓力31.5MPa
7
液控單向閥
40
YAF3-Ea10B
32通徑,32MPa
8
調(diào)速閥
80
QFF3-E10B
10通徑,16MPa
9
調(diào)速閥
80
QF3-E10B
10通徑,16MPa
10
二位二通電磁閥
30
22EF3B-E10B
6通徑,壓力20 MPa
11
壓力繼電器
-
DP1-63B
8通徑,10.5-35 MPa
12
壓力表開關(guān)
-
KF3-E3B
32Mpa,6測點
13
油箱
14
液控單向閥
YAF3-Ea10B
32通徑,32MPa
15
上液壓缸
16
下液壓缸
17
單向節(jié)流閥
48
ALF3-E10B
10通徑,16MPa
18
單向單向閥
48
ALF3-E10B
10通徑,16MPa
19
三位四通電磁換向閥
25
34EF30-E6B
6通徑,16MPa
20
減壓閥
40
JF3-10B
10通徑,板式連接
3.6.3油管的選擇
油管系統(tǒng)中使用的油管種類很多,有鋼管、銅管、尼龍管、塑料管、橡膠管等,必須按照安裝位置、工作環(huán)境和工作壓力來正確選用。本設(shè)計中油管采用鋼管,因為本設(shè)計中所須的壓力是高壓,P=31.25MPa , 鋼管能承受高壓,價格低廉,耐油,抗腐蝕,剛性好,但裝配是不能任意彎曲,常在裝拆方便處用作壓力管道一中、高壓用無縫管,低壓用焊接管。本設(shè)計在彎曲的地方可以用管接頭來實現(xiàn)彎曲。
尼龍管用在低壓系統(tǒng);塑料管一般用在回油管用。
膠管用做聯(lián)接兩個相對運動部件之間的管道。膠管分高、低壓兩種。高壓膠管是鋼絲編織體為骨架或鋼絲纏繞體為骨架的膠管,可用于壓力較高的油路中。低壓膠管是麻絲或棉絲編織體為骨架的膠管,多用于壓力較低的油路中。由于膠管制造比較困難,成本很高,因此非必要時一般不用。
1. 管接頭的選用:
管接頭是油管與油管、油管與液壓件之間的可拆式聯(lián)接件,它必須具有裝拆方便、連接牢固、密封可靠、外形尺寸小、通流能力大、壓降小、工藝性好等各種條件。
管接頭的種類很多,液壓系統(tǒng)中油管與管接頭的常見聯(lián)接方式有:
焊接式管接頭、卡套式管接頭、擴口式管接頭、扣壓式管接頭、固定鉸接管接頭。管路旋入端用的連接螺紋采用國際標準米制錐螺紋(ZM)和普通細牙螺紋(M)。錐螺紋依靠自身的錐體旋緊和采用聚四氟乙烯等進行密封,廣泛用于中、低壓液壓系統(tǒng);細牙螺紋密封性好,常用于高壓系統(tǒng),但要求采用組合墊圈或O形圈進行端面密封,有時也采用紫銅墊圈。
2.管道內(nèi)徑計算:
(1)
式中 Q——通過管道內(nèi)的流量
v——管內(nèi)允許流速 ,見表:
表3.2:液壓系統(tǒng)各管道流速推薦值
油液流經(jīng)的管道
推薦流速 m/s
液壓泵吸油管
0.5~1.5
液壓系統(tǒng)壓油管道
3~6,壓力高,管道短粘度小取大值
液壓系統(tǒng)回油管道
1.5~2.6
(1). 液壓泵壓油管道的內(nèi)徑:
取v=4m/s
根據(jù)《簡明手冊》P111查得:取d=20mm,鋼管的外徑 D=28mm;
管接頭聯(lián)接螺紋M27×2。
(2) . 液壓泵回油管道的內(nèi)徑:
取v=2.4m/s
d=21mm
根據(jù)《簡明手冊》P111查得:取d=25mm,鋼管的外徑 D=34mm;
管接頭聯(lián)接螺紋M33×2。
3. 管道壁厚的計算
式中: p——管道內(nèi)最高工作壓力 Pa
d——管道內(nèi)徑 m
——管道材料的許用應(yīng)力 Pa,
——管道材料的抗拉強度 Pa
n——安全系數(shù),對鋼管來說,時,取n=8;時,
取n=6; 時,取n=4。
根據(jù)上述的參數(shù)可以得到:
我們選鋼管的材料為45#鋼,由此可得材料的抗拉強度=600MPa;
(1). 液壓泵壓油管道的壁厚
(2). 液壓泵回油管道的壁厚
3.6.4液壓系統(tǒng)的驗算
前述液壓系統(tǒng)的初步設(shè)計是在某些估計參數(shù)的情況下進行的,當液壓系統(tǒng)原理圖,組成元件及連接管路等完全確定后,針對實際情況對設(shè)計的系統(tǒng)進行各項性能分析計算,其目的在于對液壓系統(tǒng)的設(shè)計質(zhì)量作出評價和評判,若出現(xiàn)問題,則應(yīng)對液壓系統(tǒng)某些不合理的設(shè)計進行修正或重新調(diào)整,或采取其他的必要的措施,性能驗算內(nèi)容一般包括壓力損失,效率,發(fā)熱與升溫,液壓沖擊等,對于較重要的系統(tǒng),還應(yīng)對其動態(tài)性能進行驗算或計算機仿真。計算時通常只采用一些簡化公式以求得概略結(jié)果。
1、液壓系統(tǒng)壓力損失驗算
上面已經(jīng)計算出該液壓系統(tǒng)中進,回油管的內(nèi)徑分別為20mm,25mm。
但是由于系統(tǒng)的具體管路布置和長度尚未確定,所以壓力損失無法驗算。(1)工作進給時進油路壓力損失。運動部件工作進給時的最大速度為50mm/s,進給時的最大流量為18.7L/min,則液壓油在管內(nèi)流速為
管道雷諾數(shù)為
,可見油液在管道內(nèi)流態(tài)為層流,其沿程阻力系數(shù)
3 液壓系統(tǒng)的功能原理計算
進油管道BC的沿程壓力損失為
查得換向閥34EF30-E6B的壓力損失
忽略油液通過管接頭、油路板等處的局部壓力損失,則進油路總壓力損失為
(2)工作進給時回油路的壓力損失。由于選用單活塞桿液壓缸,且液壓缸有桿腔的工作面積為無桿腔的工作面積的二分之一,則回油管道的流量為進油管道的二分之一,則
回油管道的沿程壓力損失為:
查產(chǎn)品樣本知換向閥23EF3B-E10B的壓力損失,換向閥34EF30-E10B的壓力損失,調(diào)速閥AQF3-E10B壓力損失。
回油路總壓力損失為
(3)變量泵出口處得壓力
(4)快進時的壓力損失??爝M時液壓缸為差動連接,自匯流點A至液壓缸進油口C之間的管路AC中,流量為液壓泵出口流量的兩倍即390L/min,AC段管路的沿程壓力損失為
同樣可求管道AB段及AD段得沿程壓力損失和為
查產(chǎn)品樣本知,流經(jīng)各閥的局部壓力損失為:
34EF30-E10B的壓力損失,23EF3B-E10B的壓力損失
據(jù)分析在差動連接中,泵的出口壓力為
快退時壓力損失驗算從略。上述驗算表明,無需修改原設(shè)計。
2、液壓系統(tǒng)效率η的估算
估算液壓系統(tǒng)效率η時,主要應(yīng)考慮液壓泵的總效率ηp、液壓執(zhí)行元件的總效率ηA及液壓回路的效率ηC。
η=ηPηCη
3、系統(tǒng)溫升的驗算
在整個工作循環(huán)中,工進階段所占的時間最長,且發(fā)熱量最大。為了簡化計算,主要考慮工進時的發(fā)熱量。一般情況下,工進時做功的功率損失大引起發(fā)熱量較大,所以只考慮工進時的發(fā)熱量,然后取其值進行分析。
當V=10mm/s時,即v=600mm/min
即q=7.4L/min
此時泵的效率為0.9,泵的出口壓力為20MP,則有
kw
此時的功率損失為:
假定系統(tǒng)的散熱狀況一般,取,
油箱的散熱面積A為
系統(tǒng)的溫升為
油箱中溫度一般推薦30-50
所以驗算表明系統(tǒng)的溫升在許可范圍內(nèi)。
4結(jié)論與展望
4.1結(jié)論
隨著大學幾年生活的即將結(jié)束,我們業(yè)即將踏上建設(shè)祖國的征途。大學四年生活的點點滴滴都斗匯聚到這幾個月。經(jīng)過幾個月的苦戰(zhàn)我的畢業(yè)設(shè)計終于要完成了。在以前我們也做過設(shè)計,所以也就認為畢業(yè)設(shè)計沒有什么難的,只是對以前所學的知識的檢驗。但是真正做過了這次畢業(yè)設(shè)計以后我才發(fā)現(xiàn)原來我們以前做的并不能叫做設(shè)計,至少不那么規(guī)范。而對于即將作為社會的主人的我們這一點是必須的。以前老是覺得自己什么東西都會,什么東西都懂,有點眼高手低。通過這次畢業(yè)設(shè)計,我才明白原來學習是一個長期積累的過程,在以后的工作、生活中都應(yīng)該不斷的學習,努力提高自己知識和綜合素質(zhì)。
畢業(yè)設(shè)計是我們專業(yè)課程知識綜合應(yīng)用的訓練,是我們邁向社會,從事職業(yè)工作前一個必不少的過程。”千里之行,始于足下”,通過這次畢業(yè)設(shè)計,我深深體會到這句千古名言的真正含義,我今天認真的進行畢業(yè)設(shè)計,學會腳踏實地的邁開這一步,就是為明天能夠穩(wěn)健的在社會大潮奔跑打下堅實的基礎(chǔ)。
4.2不足之處及未來展望
在這次設(shè)計過程中,體現(xiàn)出自己單獨設(shè)計的能力以及綜合運用知識的能力,體會了學以致用、突出自己勞動成果的喜悅心情,從中發(fā)現(xiàn)自己平時學習的不足和薄弱環(huán)節(jié),從而加以彌補。
經(jīng)過了這么多的過程一個合格的設(shè)計過程才能交完成。通過這次設(shè)計我學到了很多東西,這不僅僅是知識層面上的,我們在做人上也要一步一個腳印,踏踏實實的。最后預(yù)祝我們在將來的人生中做一個合格的人。
致謝
致 謝
首先,我要感謝學校這3年來的培養(yǎng),讓我有機會在更深的層次上進行學習。同時我要感謝3年來各位老師朋友對我的關(guān)心指導。在此我要特別感謝老師在畢業(yè)設(shè)計中對我的悉心指導。
在論文研究和撰寫過程中,本人得到了指導教師老師的悉心指導。在課題研究過程中,老師淵博的學識、踏實嚴謹?shù)闹螌W態(tài)度以及精益求精的工作作風使我獲益匪淺。在生活中,老師認真負責的良師風范使我懂得了很多為人的道理。在此,謹向老師表示最衷心的感謝!
感謝和我同組的各位同學,我們一起探討問題,一起解決問題,在整個設(shè)計過程中,他們給了我很大的鼓勵和支持。
感謝我的室友們,我們來自四面八方,是你們的友情支撐我走過了這漫長的四年。四年了,仿佛就在昨天。只是,只是我們以后也許在難相見了,沒關(guān)系,預(yù)祝大家前程似錦,珍重。我會記住我們在一起的美好時光。
在論文即將完成之際,我的心情無法平靜,從開始進入課題到論文的順利完成,得到了很多多位同學們的支持與幫助,在此一并表示感謝,我們永遠是朋友,今生勿忘!
參考文獻
[1]張利平.液壓傳動系統(tǒng)設(shè)計及使用. 化學工業(yè)出版社,2004
[2]楊培元. 液壓系統(tǒng)設(shè)計簡明手冊.北京:機械工業(yè)出版社,2008
[3]機械設(shè)計手冊編委會.機械設(shè)計手冊第四卷.北京:機械工業(yè)出版社,2007
[4]王積偉.液壓與氣壓傳動.北京:北京出版社,2005
[5]張利平.液壓與氣壓技術(shù)速查手冊.北京:化學工業(yè)出版社,2006
[6]張利平.現(xiàn)代液壓技術(shù)應(yīng)用220例.北京:化學工業(yè)出版社,2007
[7]王守成.液壓元件及選用.北京:化學工業(yè)出版社,2007
[8]鄧樂.液壓傳動.北京:北京郵電大學出版社,2010
[9]劉延俊.液壓元件使用指南.北京:化學工業(yè)出版社,2007
[10] 陳波,張行舫.一種新型雙向液動增壓器的機械換向裝置[P]. 中國專利:97236341.6,1998-08-26.
[11]Anthony Esposito.Fluid Power With Applications.New ersey:Prentice-rlass.lnc.1980
[12]Rob Walter.Improring systems with accumulaters means big saeings.Hydraulics&Pneumat -cs.Aug2008:40
[13]Y.He,P.5.K.Chua,G.H.Lim.Fault Diagnosisof Loaded Water hydraulie Aetuators by Online Testing with LABVIEW[J]. Journal of Testing and Evaluation,2003,31(5):378~387
[14]Bill Savela.Digital Control Aids hydraulie-Press Produetivity[J]. Metal Forming,2005,39(2):20~22
[15]K.Heister,P.J.Kleingeld,U.5.Keijzer.A new laboratory set-up for measurements of electrical,hydraulic and osmotic fluxes in clays.Engineering Geology,2005,77(3/4):295~303