影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

《平面圖形的面積》PPT課件

上傳人:san****019 文檔編號:22439772 上傳時間:2021-05-26 格式:PPT 頁數:31 大?。?.23MB
收藏 版權申訴 舉報 下載
《平面圖形的面積》PPT課件_第1頁
第1頁 / 共31頁
《平面圖形的面積》PPT課件_第2頁
第2頁 / 共31頁
《平面圖形的面積》PPT課件_第3頁
第3頁 / 共31頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《平面圖形的面積》PPT課件》由會員分享,可在線閱讀,更多相關《《平面圖形的面積》PPT課件(31頁珍藏版)》請在裝配圖網上搜索。

1、一 、 平 面 圖 形 的 面 積 二 、 由 平 行 截 面 面 積 求 體 積 第 十 章 定 積 分 的 應 用 (一 )由 平 行 截 面 面 積 求 體 積直 接 應 用 求 旋 轉 體 的 體 積面 積 公 式 ( 直 角 坐 標 , 極 坐 標 ) 一 、 平 面 圖 形 的 面 積 如 果 函 數 y=f(x)( f(x)0)在 區(qū) 間 a, b上 連 續(xù) , 則 由 曲線 y=f(x)、 x軸 與 直 線 x=a、x=b所 圍 成 的 曲 邊 梯 形 的 面 積為 復 習 : O x ya b y=f (x) baf (x)dx = caf (x)dx bcf (x)dx。

2、ba f(x)dx。 由 上 下 兩 條 連 續(xù) 曲 線 y=f(x)、 y=g(x)與 左 右 兩 條 直 線x=a、 x=b所 圍 成 的 圖 形 的 面 積 S 如 何 求 ?考 慮 如 下 問 題 : O x y 1、 若 圖 形 在 x軸 上 方 , a b y=f (x) y=g(x)注 意 圖 形 的 形 成 S =ba f(x)dxba g(x)dx =ba f(x)g(x)dx。 =baf(x)g(x)dx。 ba f( ) ba ( ) x ba f(x) g(x)dx。 a b y=f(x) y=g(x)O x y 2、 若 圖 形 不 在 x軸 上 方 , y=f(x)

3、m y=g(x)mm將 圖 形 平 移 到 x軸 的 上 方S =baf(x)mdx bag(x)mdx =baf(x)g(x)dx。 由 上 下 兩 條 連 續(xù) 曲 線 y=f(x)、 y=g(x)與 左 右 兩 條 直 線x=a、 x=b所 圍 成 的 圖 形 的 面 積 S 如 何 求 ?考 慮 如 下 問 題 : 1、 若 圖 形 在 x軸 上 方 ,S =ba f(x)dxba g(x)dx =ba f(x)g(x)dx。 =baf(x)g(x)dx。 ba f( ) ba ( ) x ba f(x) g(x)dx。 f(x)mdx g(x)mdx 結 論 : 由 上 下 兩 條 連

4、 續(xù) 曲 線 y=f(x)、 y=g(x)與 左 右 兩 條 直 線 =baf(x)g(x)dx。 Sx=a、 x=b所 圍 成 的 圖 形 的 面 積 為注 : (1)當 曲 線 f(x)=0或 g(x)=0時 , 上 述 公 式 也 成 立 。O x ya b y=f(x)g(x)=0 O x ya b y=g(x)f(x)=0 O x ya b y=f(x)g(x)=0 O x ya b y=f(x)g(x)=0 (2)當 左 右 兩 邊 縮 為 一 點 時 , 上 述 公 式 也 成 立 。 (3)積 分 區(qū) 間 就 是 圖 形 在 x軸 上 的 投 影 區(qū) 間 。 結 論 : 由 上

5、 下 兩 條 連 續(xù) 曲 線 y=f(x)、 y=g(x)與 左 右 兩 條 直 線 =baf(x)g(x)dx。 Sx=a、 x=b所 圍 成 的 圖 形 的 面 積 為注 : (1)當 曲 線 f(x)=0或 g(x)=0時 , 上 述 公 式 也 成 立 。 (4)如 果 y=f(x)有 分 段 點 c, 則 需 把 圖 形 分 割 后 計 算 。O x y a b y=f(x)g(x)=0 y=f1(x) y=f2(x)c S=baf (x)g(x)dx = caf1(x)g(x)dx bcf2(x)g(x)dx。 S=ba f (x)g(x)dx =caf1(x)g(x)dx bcf

6、2(x)g(x)dx。 結 論 : 由 上 下 兩 條 連 續(xù) 曲 線 y=f(x)、 y=g(x)與 左 右 兩 條 直 線 =baf(x)g(x)dx。 Sx=a、 x=b所 圍 成 的 圖 形 的 面 積 為注 : (1)當 曲 線 f(x)=0或 g(x)=0時 , 上 述 公 式 也 成 立 。 (2)當 左 右 兩 邊 縮 為 一 點 時 , 上 述 公 式 也 成 立 。 (3)積 分 區(qū) 間 就 是 圖 形 在 x軸 上 的 投 影 區(qū) 間 。 討 論 : 由 左 右 兩 條 連 續(xù) 曲 線 x=y(y)、 x=j(y)與 上 下 兩 條 直線 y=c、 y=d所 圍 成 的

7、圖 形 的 面 積 S 如 何 求 ?O x ycd x=y(y) x=j(y)dyyyS dc )()( yj = 。 答 案 : 結 論 : 由 上 下 兩 條 連 續(xù) 曲 線 y=f(x)、 y=g(x)與 左 右 兩 條 直 線 =baf(x)g(x)dx。 Sx=a、 x=b所 圍 成 的 圖 形 的 面 積 為 ab xyO S1結 論 : 由 上 下 兩 條 連 續(xù) 曲 線 y=f(x)、 y=g(x)與 左 右 兩 條 直 線 =baf(x)g(x)dx。 Sx=a、 x=b所 圍 成 的 圖 形 的 面 積 為 例 1. 求 橢 圓 所 圍 成 的 圖 形 面 積 。 解 :

8、 設 橢 圓 在 第 一 象 限 的 面 積 為 S1, 則 橢 圓 的 面 積 為2 22 2 1x ya b =2202 200 0 24 1 , let sin , we get 4 cos(1 cos2 ) .4 a a xS ydx b dx x a taS ab tdtab t dtab = = = = 221 xy b a= 解 : 由 對 稱 性 , 圖 形 面 積 是 第 一 象 限 部 分 的 兩 倍 。 S =2 dxxxdxxx )1 12()21 1( 231 210 22 x 3= 所 圍 成 的 圖 形 的 面 積 。 例 2 求 曲 線 y=21 x2、 y 2

9、1 1x= 與 直 線 x 3= 、 xO-1 1 y y 21 1x= 3=3 y=21 x2 解 : 由 對 稱 性 , 圖 形 面 積 是 第 一 象 限 部 分 的 兩 倍 。 S =2 dxxxdxxx )1 12()21 1( 231 210 22 103 )6 arctg( xx 303 ) arctg6( xx =2 x 3= 所 圍 成 的 圖 形 的 面 積 。 )233(31 = .11 例 2 求 曲 線 y=21 x2、 y 21 1x= 與 直 線 x 3= 、 例 3 計 算 拋 物 線 y2=2x 與 直 線 xy=4所 圍 成 的 圖 形 的面 積 。 8 y

10、 -2 2 x2O4 44 (8, 4)(2, 2) 解 : 求 兩 曲 線 的 交 點 得 : (2, 2), (8, 4)。 將 圖 形向 y軸 投 影 得 區(qū) 間 2, 4。 A= 1861421)214( 4232242 = yyydyyy 。 =18。思 考 : 為 什 么 不 向 x軸 投 影 ? S= 1861421)214( 4232242 = yyydyyy oy xa b a boy x一般地 , 當曲邊梯形的曲邊由參數方程 = )()(ty tx yj給出時,按順時針方向規(guī)定起點和終點的參數值21 ,tt則曲邊梯形面積 = 2121 d)()()()( ttttba tt

11、ttdtydxA jyjy)(1 axt =對應)(1 bxt =對應 極坐標情形,0)(,)( jj C設求由曲線)(j=r及 = ,射線圍成的曲邊扇形的面積 .在區(qū)間, 上任取小區(qū)間d, 則該小區(qū)間上曲邊扇形面積的近似值為 j d)(21d 2=S所求曲邊扇形的面積為j d)(2121 2 = dAA )(j=r xd 對應 從 0 變例5. 計算阿基米德螺線解: )0( = aar xa2o d d)(21 2a= 20A 22a= 331 022334 a=到 2 所圍圖形面積 . tta dcos8 20 42= 例6. 計算心形線所圍圖形的面積 . 解: )0()cos1( = a

12、ar xa2o d d)cos1(21 22 a= 02A = 02a d2cos4 4 (利用對稱性)2=t令= 28a 43 21 2 223 a= 二 、 由 平 行 截 面 面 積 求 體 積 設 一 立 體 在 x軸 上 的 投 影 區(qū) 間為 a, b , 過 x點 垂 直 于 x軸 的 截面 面 積 S(x)是 x的 連 續(xù) 函 數 , 求此 立 體 的 體 積 。 V =ni 1S(i)xi。 (3)令 l=maxxi, 則 立 體體 積 為 (1) 在 a, b內 插 入 分 點 : a=x0 x1x2 xn1xn=b, (2)過 xi(i=1, 2, , n1)且 垂直 于

13、x軸 的 平 面 , 把 立 體 分 割 成n個 小 薄 片 , 第 i個 小 薄 片 體 積的 近 似 值 S(xi)xi。 將 n個 小 薄 片 體 積 的 近 似 值相 加 得 立 體 體 積 的 近 似 值xO a x1 xi1 xi xn b V = = ni 10liml S( )xi =ba S(x)dx。 i a bzx yco垂直 x 軸的截面是橢圓1)1()1( 2222 2 22 2 = axax c zb y例7. 計算由曲面1222222 = czbyax所圍立體(橢球體)解:它的面積為)1()( 22axbcxS =因此橢球體體積為bc2= 0a bca34=特別當

14、 a = b = c 時就是球體體積 . )( axa xbc ax d)1( 22= aV 02 x 233axx的體積. 例8. 一平面經過半徑為R 的圓柱體的底圓中心 ,并與底面交成 角, 222 Ryx =解: 如圖所示取坐標系,則圓的方程為垂直于x 軸 的截面是直角三角形,其面積為tan)(21)( 22 xRxA = )( RxR = R xxRV 0 22 dtan)(212 32 31tan2 xxR = 0R tan32 3R=利用對稱性計算該平面截圓柱體所得立體的體積 .o R x yx o R x y思考: 可否選擇 y 作積分變量 ?此時截面面積函數是什么 ?如何用定積

15、分表示體積 ? ),( yx=)(yA提示: tan2 yx 22tan2 yRy = =V R0tan2 yyRy d22 O xba y區(qū) 間 a, b上 截 面 積 為 S(x)的 立 體 體 積 :右 圖 為 由 連 續(xù) 曲 線 y=f(x)、 直 線 x=a 、 x=b 及 x 軸 所 圍 成 的 曲 邊梯 形 繞 x軸 旋 轉 一 周 而 成 的 立 體 。 y=f (x) V =ba f(x)2dx=ba f(x)2dx。 V =ba S(x)dx。 關 鍵 是 確 定 截 面 面 積 2( ) ( )S x f x= 當考慮連續(xù)曲線段)()( dycyx =j繞 y 軸旋轉一周

16、圍成的立體體積時, = dc dyyV 2)(j xoy )(yx j=cdy 2( ) ( )S y y j=截面面積為于是有 例 9 連 接 坐 標 原 點 O及 點 P(h, r)的 直 線 、 直 線 x=h 及 x軸 圍 成 一 個 直 角 三 角 形 。 將 它 繞 x軸 旋 轉 構 成 一 個 底半 徑 為 r、 高 為 h的 圓 錐 體 。 計 算 這 圓 錐 體 的 體 積 。 解 : 過 原 點 O 及 點 P(h, r)的 直 線 方 程 為 y xhr= 。 V=h0 ( xhr )2dx = 22 hr h0 x2dx =31 h r 2。 所 求 圓 錐 體 的 體

17、 積 為 = 22 hr h0 x2dx 231 hr= 。 xhry = hr xyO曲 線 y=f(x)繞 x 軸 旋 轉 而 成 的 立 體 體 積 : V =baf(x)2dx。 區(qū) 間 a, b上 截 面 積 為 S(x) 的 立 體 體 積 : V =ba S(x)dx。 。 ( , )P r h ay xb例10. 計算由橢圓12222 = byax所圍圖形繞 x 軸旋轉而成的橢球體的體積. 解: 方法1 利用直角坐標方程)(22 axaxaaby =則截面面積xxaab a d)(2 20 222 = (利用對稱性) = 3222 312 xxaab 0a 234 ab= o=

18、 a dxyV 0 22 x2( )S x y=于是 方法2 利用橢圓參數方程 = tby tax sincos則xyV a d2 0 2= ttab dsin2 32= 22 ab= 32234 ab= 02特別當b = a 時, 就得半徑為a 的球體的體積.34 3a xyo a2例11. 計算擺線 = = )cos1( )sin( tay ttax )0( a的一拱與 y0所圍成的圖形分別繞 x 軸 , y 軸旋轉而成的立體體積 .解: 繞 x 軸旋轉而成的體積為xyV ax d20 2= 利用對稱性= 20 22 )cos1( ta tta d)cos1( tta d)cos1(2 0

19、 33 = tta d2sin16 0 63= uua dsin32 20 63= = 332 a 65 43 21 2325 a= ay )2( tu =令 xyo a2a繞 y 軸旋轉而成的體積為 = = )cos1( )sin( tay ttax )0( a a2yyxV ay d)(20 22= = 22 )sin( tta tta dsin2 yyxa d)(20 21 )(2 yxx = 22 )sin( tta tta dsin0注意上下限 ! = 20 23 dsin)sin( tttta 336 a= )(1 yxx =注意分段點! 分部積分對稱關于2注 20 2 dsin)

20、sin( tttt = 20 322 d)sinsin2sin( tttttt )( =tu令= uuu sin)2( 22 uu 2sin)(2 uu dsin3(利用“偶倍奇零”)= 0 dsin4 uuu 0 2 dsin4 uu24= uudsin8 20 2 22184 2 = 26= o x1 2y B C3A例12. 求曲線13 2 = xy與 x 軸圍成的封閉圖形繞直線 y3 旋轉得的旋轉體體積. (94 考研)解: 利用對稱性 ,=y 10 x,22 x 21 x,4 2x故旋轉體體積為=V 432 xx d)2(32 10 22 xx d)1(236 10 22 = xx d)1(2 21 22 x 12 2 15448=在第一象限 xx d)4(32 21 22 分部積分對稱關于2注 20 2 dsin)sin( tttt = 20 322 d)sinsin2sin( tttttt )( =tu令= uuu sin)2( 22 uu 2sin)(2 uu dsin3(利用“偶倍奇零”)= 0 dsin4 uuu 0 2 dsin4 uu24= uudsin8 20 2 22184 2 = 26= 作 業(yè) : P242 T1, 5, P246 T2 預 習 : 第 三 節(jié) 平 面 曲 線 的 弧 長 與 曲 率

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!