研究型腔壓力和結(jié)合型旋渦真空泵機(jī)油濾清器的動(dòng)態(tài)分析【中文3170字】【PDF+中文WORD】
研究型腔壓力和結(jié)合型旋渦真空泵機(jī)油濾清器的動(dòng)態(tài)分析【中文3170字】【PDF+中文WORD】,中文3170字,PDF+中文WORD,研究,壓力,結(jié)合,旋渦,真空泵,機(jī)油,濾清,動(dòng)態(tài),分析,中文,3170,PDF,WORD
【中文3170字】
研究型腔壓力和結(jié)合型旋渦真空泵機(jī)油濾清器的動(dòng)態(tài)分析
王Licun1 陳Yajuan2 王Xudong1 張Xianming1
(1. 重慶科技大學(xué)教育部廢油回收技術(shù)與裝備工程技術(shù)研究中心,重慶,400067
2.中國(guó)嘉陵工業(yè)集團(tuán)有限公司工程與技術(shù)研究所,400032)
摘要:動(dòng)態(tài)渦盤中的氣體在不同方向的作用可分為軸向氣體力,徑向氣體動(dòng)力,切向氣動(dòng)力,和傾覆力矩和旋轉(zhuǎn)扭矩兩種力矩。研究油過(guò)濾器渦旋真空泵的動(dòng)力是研究動(dòng)態(tài)平衡設(shè)計(jì),強(qiáng)度設(shè)計(jì)和可靠性分析的第一步。在本次研究中切向氣電,氣徑向力和軸向氣體力在每個(gè)組合曲線渦旋真空泵工作腔的大小,方向和作用位置都得到了詳細(xì)的分析。并且在動(dòng)力學(xué)分析的基礎(chǔ)上完成了計(jì)算公式的推導(dǎo)。本次研究的主要目的在于為原動(dòng)機(jī)的選擇提供合理的設(shè)計(jì)原理,為有限元分析提供計(jì)算載荷,為結(jié)構(gòu)強(qiáng)度研究和主要部件功率分析提供合理的計(jì)算數(shù)據(jù)和理論基礎(chǔ)。
關(guān)鍵詞:渦旋式真空泵;連接剖面;模腔壓力;動(dòng)態(tài)分析
1引言
氣體中的動(dòng)態(tài)渦流盤作用不同的方向上可分為軸向氣體力、徑向氣體動(dòng)力、切向氣動(dòng)力、力矩由傾覆力、矩旋轉(zhuǎn)扭矩力。強(qiáng)度設(shè)計(jì)和可靠性分析是研究設(shè)計(jì)油過(guò)濾器旋渦真空泵的動(dòng)力的第一步[1-2]。每個(gè)復(fù)合曲線機(jī)油機(jī)濾的工作室旋渦真空泵大小,方向和切向氣體的位置的作用電力,燃?xì)鈴较蛄洼S向氣體功率別為詳細(xì)的分析 [3-6]。完成的推導(dǎo)計(jì)算公式,并奠定了基礎(chǔ)動(dòng)力學(xué)分析。提供一個(gè)合理的 設(shè)計(jì)依據(jù),為原動(dòng)機(jī)的選擇,以提供有限元分析的計(jì)算負(fù)荷并提供了計(jì)算,理論基礎(chǔ),結(jié)構(gòu)強(qiáng)度和動(dòng)力分析主要組件[7-10]。
2氣動(dòng)力分析
2.1模腔壓力計(jì)算
假設(shè)每個(gè)空腔壓縮處在絕熱中:
Pi—在腔室中的壓力;
Ps—在吸入室壓力;
Vi—容積;
Vs—在抽吸腔室的最大容積;
Si—腔室的區(qū)域;
Ss—抽吸腔室的最大容積;
h—渦旋盤的高度;
K—比熱容比;
i=1, 2, 3.
2.2氣動(dòng)力計(jì)算
氣動(dòng)力計(jì)算是所有的基礎(chǔ)動(dòng)態(tài)計(jì)算,用不同的旋渦型材不同的氣體強(qiáng)度計(jì)算方法,結(jié)合類型行氣動(dòng)力,其計(jì)算過(guò)程如下。
作用在氣電動(dòng)力渦盤和扭矩如圖。
圖1氣動(dòng)力和軌道旋渦瞬間
(1) 切線天然氣發(fā)電
施加在動(dòng)態(tài)渦氣動(dòng)力沿著所述偏心軸切線方向光盤,被稱為切向氣力,用符號(hào) 。切向氣動(dòng)力是用一種力量阻止 曲軸的運(yùn)動(dòng),以及運(yùn)動(dòng)渦旋盤旋轉(zhuǎn)和渦流盤傾覆。
圖2給出了分1'',2'',3''都在靜態(tài)渦流的內(nèi)壁表面盤,而點(diǎn)1',2',3'是的表面上動(dòng)渦旋盤的外壁上。
圖2切線氣體的軌道旋渦力量
當(dāng)渦表面是由分隔 1-1',2'-2',對(duì)渦盤3'-3'的作品示位置,下左部分是在同一壓縮腔壓力上處相等,上另一方面,右上部分是在不同腔室,其中的壓力彼此不同。
對(duì)擁有的渦卷線對(duì)稱動(dòng)態(tài),靜態(tài)渦旋盤和定義切向力,切向聯(lián)合力量作用于相鄰密封腔必須通過(guò)和垂直于中心連接的中點(diǎn),它是通過(guò)動(dòng)態(tài)的,靜態(tài)的基圓上形成渦盤。畢竟,切電源引起的通過(guò)在相鄰的不同的壓縮壓力室。與動(dòng)態(tài)渦旋盤的移動(dòng),工作腔中的氣體壓力和端
空腔的臉部區(qū)域會(huì)發(fā)生變化,所以切向隨著曲柄角度θ的變化的電源。該本文的研究對(duì)象是一個(gè)新的復(fù)合曲線包且對(duì)起跑線不改正。應(yīng)有到研磨過(guò)程的要求,本包裝和工具一輪的開(kāi)始部分會(huì)干擾,使過(guò)渡腔連接到排氣室為時(shí)尚早。以及與所述排氣開(kāi)始的角度,根據(jù)不同的角落移動(dòng),我們將盡關(guān)于切向權(quán)力分開(kāi)討論遭遇了渦旋盤。排氣角由第3章確定動(dòng)態(tài)渦光盤可以切向氣動(dòng)力被分成兩個(gè)主要階段為角變化。在這個(gè)階段,工作腔從形成動(dòng),靜渦旋盤是吸入室,壓縮室和排氣室。因此,抽吸之間的壓力差室和壓縮室,所述壓縮室和排氣室產(chǎn)生的MMD - 2第18屆中國(guó)機(jī)構(gòu)與機(jī)器科學(xué)國(guó)際會(huì)議3
切向力。本文的研究對(duì)象是復(fù)合曲線包裹,因此,該工作室
由不同的曲線,角落里的不同角度范圍內(nèi),從而產(chǎn)生切向的變化
動(dòng)力方面,總的切向力。
在排氣房間和該壓縮腔之間的切向電源排氣室的面積是:
在吸力房間和該壓縮腔之間的切向電源的壓縮室面積是:
上抽吸區(qū)的切向功率腔是:
P1排氣室壓力; P2在壓縮腔壓力;P3壓吸入室;Ps進(jìn)氣用壓力
li1,li2 ,li3 ,l01,l02,l03,示于圖2中。
因?yàn)閴嚎s之間的連接的室和排氣室,以及新的吸室尚未形成,,計(jì)算和。
總的切向氣動(dòng)力是每一個(gè)總和切線能量活躍在各個(gè)章節(jié)
切割面積,其計(jì)算公式為:
(2)徑向天然氣發(fā)電
徑向氣體動(dòng)力沿規(guī)定在動(dòng)態(tài)的,靜態(tài)的基圓連接線
渦盤,用符號(hào)Fr表示。
徑向氣體動(dòng)力Fr值從中心驅(qū)動(dòng) 動(dòng)渦盤以靜渦旋盤的中心, 作為可調(diào)偏心渦旋壓縮,主軸偏心率降低的傾向,從而使徑向間隙擴(kuò)大,增加氣體的量,泄漏通過(guò)徑向游隙,同時(shí)也可引起變化的摩擦損失。
在排氣室中,徑向GADS權(quán)力作用在軌道旋渦是:
在壓縮室中,徑向GADS作用于軌道旋渦權(quán)力是:
類似地,在吸入室,該作用于軌道旋渦徑向GADS權(quán)力是:
總放射功率為:
(3)軸向氣體動(dòng)力
軸向氣動(dòng)力是電油過(guò)渦流真空泵最重要的氣體 ,也就是渦流真空泵的主要缺點(diǎn)之一 ,用符號(hào)Ft。
如示于圖3,沿軸向氣動(dòng)力沿著所述偏心軸的軸線方向移動(dòng)的應(yīng)用動(dòng)渦盤,動(dòng)動(dòng)渦盤沿軸向偏離,以靜態(tài)渦旋盤,增大軸向間隙,從而導(dǎo)致增加徑向氣體泄漏,降低了真空泵容積效率。為了避免這種情況,我們必須計(jì)算由壓縮氣體產(chǎn)生的軸向動(dòng)力,并試圖平衡可靠和合理的氣體軸向動(dòng)力。
圖3軸功率的影響
在圖3中,1是固定渦旋盤,2是 動(dòng)態(tài)渦旋盤,3是站立。
本研究針對(duì)基于線結(jié)合在電弧中,中間壓縮的渦旋室和吸入室構(gòu)成
不完整的基圓的漸開(kāi)線,它可以被制成圓弧和圓的漸開(kāi)線。在排氣室中,由于圓漸開(kāi)線輪廓,遭受軸向氣體力的地區(qū)
關(guān)于動(dòng)態(tài)渦流盤是(2.10)和(2.11),即:
我們可以分別計(jì)算出軸功率區(qū)域根據(jù)中間的輪廓壓縮室和吸入室的
不同的角落:
首先,
也就是
我們可以得到軸向區(qū)域:
然后,
也就是
,我們可以得到軸向區(qū)域:
在吸入腔,首先
,也就是
我們可以得到軸向區(qū)域:
然后。
也就是
我們可以得到軸向區(qū)域,
因此,在動(dòng)態(tài)渦軸向氣體動(dòng)力光盤是:
Ps是連詞檔機(jī)油吸氣壓力過(guò)濾渦旋真空泵,K是特定比例
熱。
(4) 傾覆力矩
曲柄銷的圓盤中的移動(dòng)渦流運(yùn)動(dòng)點(diǎn)是飛機(jī)上的不一樣的垂直的軸線而導(dǎo)致動(dòng)態(tài)渦盤傾覆由于點(diǎn)到生成物切氣力F和徑向氣體力和驅(qū)動(dòng)力F
傾覆力矩:
其中,h表示線渦的高度; H表示渦磁盤驅(qū)動(dòng)器表面之間的距離。
傾覆力矩將增加的靜態(tài)和動(dòng)態(tài)渦旋盤之間不均勻的差距,機(jī)油濾清器是阻礙旋渦真空泵的機(jī)械效率和容積效率的的主要因素之一。
(5)旋轉(zhuǎn)力矩
當(dāng)基圓中心為移動(dòng)渦流磁盤驅(qū)動(dòng)器中心時(shí),垂直于切向曲軸,切向氣力的方向在動(dòng)態(tài)渦旋盤圓的中點(diǎn)作用于靜渦盤基圓中心,動(dòng)渦盤繞軸偏心旋轉(zhuǎn)線轉(zhuǎn)矩,即旋轉(zhuǎn)扭矩,其方向與動(dòng)渦盤旋轉(zhuǎn)的方向相同。該旋轉(zhuǎn)扭矩會(huì)破壞濾渦旋真空泵油的正常工作,因此必須在使用運(yùn)動(dòng)渦旋盤的旋轉(zhuǎn)時(shí)應(yīng)嚴(yán)格限制防旋轉(zhuǎn)機(jī)構(gòu)的結(jié)構(gòu)設(shè)計(jì)。已知?dú)怏w的切向力施加到曲軸的旋轉(zhuǎn)分析的中點(diǎn)從曲柄的切向力的力矩點(diǎn)中心線與曲柄銷中心線,在圖中所示4 。切向力移動(dòng)到曲軸的中心銷,曲柄銷只是削減力的作用,但還了一下力的作用。
圖4切向力的移植圖表
扭矩為力 運(yùn)動(dòng)旋渦 沿線圈曲柄銷方向中心線 渦盤轉(zhuǎn)的旋轉(zhuǎn),它被稱為 旋轉(zhuǎn)轉(zhuǎn)矩由下面的公式為:
3主軸功率分析
如圖5所示,心軸力如下:
圖5主軸的力矩
渦盤自動(dòng)切斷偏心反應(yīng)力q。動(dòng)渦盤的規(guī)模和作用同于總切削方向 ,q垂直作用于偏心軸套孔中心線,外界的作用在徑向方向上。主軸和偏心的部分在底表面上的偏心孔具有壓縮腔引入后面的壓力p ',所以作用在向下的紡錘力
從主要和輔助軸承削減反作用力,徑向反應(yīng)力,軸向反作用力的。平衡重旋轉(zhuǎn)慣性力
和力矩慣性。
主,副軸承的摩擦扭矩,動(dòng)態(tài)渦盤曲柄銷 。從驅(qū)動(dòng)器的驅(qū)動(dòng)扭矩機(jī)制
.
4結(jié)論
在渦流分布的設(shè)計(jì)研究中,應(yīng)瞄準(zhǔn)單檔及其改善或限制。優(yōu)化目前參數(shù),在連型材軸承上的弧長(zhǎng)和圓的漸開(kāi)線 進(jìn)行了研究。這首先推導(dǎo)的線相結(jié)合,油過(guò)濾器渦旋真空泵徑向切到和軸向氣體力,傾覆力矩和旋轉(zhuǎn)基于線油過(guò)濾器渦旋真空泵結(jié)合扭矩計(jì)算公式 。應(yīng)力分析十字滑環(huán), 動(dòng)渦盤,主軸三個(gè)主要組成部分的油的動(dòng)態(tài)平衡,奠定過(guò)濾器旋渦真空泵設(shè)計(jì)的強(qiáng)度設(shè)計(jì)和可靠性的堅(jiān)實(shí)的基礎(chǔ)。
致謝
這項(xiàng)工作得到了國(guó)家自然科學(xué)基金中國(guó)的(50805149),重慶市自然科學(xué)基金科學(xué)技術(shù)委員會(huì)科學(xué)科技項(xiàng)目基金(cstc2011ac6086), 重慶市教育委員會(huì)科學(xué)科技項(xiàng)目基金(kj110710),重慶科學(xué)與技術(shù)大學(xué)項(xiàng)目(kjtd201019,kjtd11211),CTBU博士點(diǎn)基金 (1152005)的支持。
MMD-2 第 18 屆中國(guó)機(jī)構(gòu)與機(jī)器科學(xué)國(guó)際會(huì)議 1 Research on cavity pressure and dynamic analysis of oil filter vortex vacuum pump of conjunction profiles WANG Licun1 CHEN Yajuan2 WANG Xudong1 ZHANG Xianming1(1.Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education,Chongqing Technology and Business University,Chongqing,400067 2.Research Institute Eng.And Tech.,China Jialing Industry Croup,Co.,Ltd.400032)Abstract:The role of gas in the dynamic vortex disc in different directions can be divided into axial gas power,radial gas power and tangential gas power,and torque consist of overturning moment and the rotation torque.The dynamics of the oil filter vortex vacuum pump is the first step to study the dynamic balance of design,strength design and reliability analysis.The size,direction and role of location of the tangential gas power,radial gas power and the axial gas power were detailed analyzed,which happened in the each working chambers of the composite curve vortex vacuum pump.Completed derivation of the formula for calculating,and lay the foundation for the kinetic analysis.In order to provide a reasonable design basis for the selection of the prime mover,to provide the computing load of finite element analysis and to provide the calculations,theoretical foundation structural strength and analysis of power in the main components.Key words:Vortex vacuum pump;Conjunction profiles;Cavity pressure;Dynamic analysis 1 Introduction*The role of gas in the dynamic vortex disc in different directions can be divided into axial gas power,radial gas power and tangential gas power,and torque consist of overturning moment and the rotation torque.The dynamics of the oil filter vortex vacuum pump is the first step to study the dynamic balance of design,strength design and reliability analysis 1-2.The size,direction and role of location of the tangential gas power,radial gas power and the axial gas power were detailed analyzed,which happened in the each working chambers of the composite curve oil filter vortex vacuum pump 3-6.Completed derivation of the formula for calculating,and lay the foundation for the kinetic analysis.In order to provide a reasonable design basis for the selection of the prime mover,to provide the computing load of finite element analysis and to provide the calculations,theoretical foundation structural strength and analysis of power in the main components 7-10.2 The analysis of the gas power 2.1 The cavity pressure calculation National Natural Science Foundation of China(50805149),Chongqing Science and Technology Committee Science and Technology Project Foundation(cstc2011ac6086)Assuming that each cavity compression is adiabatic process:KKKsssisssiiiVhSSPPPPVhSS iPpressure in the chamber;sPpressure in the suction chamber;iVvolume of chamber;sVthe maximum volume in suction chamber;iSarea of chamber;sSthe maximum volume of suction chamber;hthe height of vortex plate;Kratio of specific heat;i=1,2,3.2.2 Gas power calculation Gas power calculation is the foundation of all the dynamic calculation,different vortex profiles with different gas strength calculation method,conjunction type line gas power calculation process is as follows.Role in dynamic vortex disk of gas power and torque as shown in figure 1.Power mainly consist of axes gas powertF,radial gas power rFand tangential gas powerF.Torque make up of overturning MMD-2 第 18 屆中國(guó)機(jī)構(gòu)與機(jī)器科學(xué)國(guó)際會(huì)議 2 momenttM,rotational momentM.Fig.1 the gas power and moment of the orbiting vortex (1)The tangent gas power The gas power imposed on the dynamic vortex disc along the eccentric shaft tangential direction,known as tangential gas power,with notation F.Tangential gas power is a kind of power to stop the crankshaft movement,as well as moving vortex disk rotation and the vortex disc overturning.Figure2 shows that points 1、2、3 are on the surface of the inner wall of the static vortex disk,while points 1、2、3 are on the surface of the outer wall of the dynamic vortex disc.Fig.2 Tangent gas power of the orbiting vortex When vortex surface which was separated by 11、22、33 on the vortex disc works in the position shown,the lower left parts are in the same compression chamber pressure equal everywhere,on the other hand,the upper right parts are in the different chamber where the pressures differ from each other.Owning to the wrap-line symmetry of the dynamic、static vortex disc and the definition of tangential power,the joint tangential power acting on the adjacent sealing chamber must through and perpendicular to the midpoint of the center connection,it is formed by the base circle of dynamic、static vortex disc.After all,the tangential power is caused by different pressure in the adjacent compression chamber.With the movement of the dynamic vortex disc,the gas pressure of the working chamber and the end face area of the cavity will change,so the tangential power along with the crank angle changes.The study object of this paper is a new composite curves wrap and there is no correction on the start line.Due to the requirement of the milling process,the beginning section of wrap and tool round will interfere,making the transition cavity connected to the exhaust chamber too early.And beginning with the exhaust angle,based on different corner moving,we will make separate discussions about the tangential powers suffered on the vortex disc.The exhaust angle is determined by the chapter 3,the tangential gas power on dynamic vortex disc can be divided into two major stages as the corner changes.At this stage,the working chamber formed from the dynamic、static vortex disc are suction chamber,compression chamber and the exhaust chamber.Therefore,the pressure difference between the suction chamber and compression chamber,the compression chamber and the exhaust chamber produced the MMD-2 第 18 屆中國(guó)機(jī)構(gòu)與機(jī)器科學(xué)國(guó)際會(huì)議 3 tangential power.The study object of this paper is a composite curves wrap,thus,the working chamber consist of different curves as the corner at different angular range,resulting in the change of the tangential power area and the total tangential power.Between the exhaust chamber and the compression chamber,the tangential power on the area of exhaust chamber is:11112()()()ioFh llr PP (1)Between the suction chamber and the compression chamber,the tangential power on the area of compression chamber is:22223()()ioFh llr PP (2)The tangential power on the area of suction chamber is:3333()()iosFh llr PP (3)And:P1pressure in the exhaust chamber;P2pressure in the compression chamber;P3pressure in the suction chamber;Pspressure of inlet air;1 il,2il,3il,1ol,2ol,3olare shown in the figure 2。Because of the connection between compression chamber and exhaust chamber,and the new suction chamber has not formed yet,10F,the calculation of 2Fand3Fare (2),(3).The total gas tangential power is sum of every tangential power active in various sections of the cutting area,and its calculation is:123FFFF (4)(2)Radial gas power Radial gas power is imposed along the connection line of base circle in the dynamic、static vortex disc,with notationrF.Radial gas powerrFdriven from the center of dynamic vortex disc to the center of static vortex disc,as for the adjustable eccentric vortex compression,Spindle eccentricity tends to decrease,so that the radial clearance to expand,increase the amount of gas leakage through the radial clearance,at the same time can also cause changes in the friction loss.In the exhaust chamber,the radial gads powers acting on the orbiting vortex is:11122()rFa h PP (5)In the compression chamber,the radial gads powers acting on the orbiting vortex is:21232()rFa h PP (6)Similarly,in the suction chamber,the radial gads powers acting on the orbiting vortex is:3132()rsFa h PP (7)The total radial power is:31112()rrisiFFa h PP (8)(3)Axial gas power The axial gas power is the most important gas power on the vortex of the oil filter vortex vacuum pump,is also one of the main drawback of the vortex vacuum pump,with notationtF.As is shown in figure 3,the axial gas power applied along the eccentric shaft axis direction moving the dynamic vortex disc,moving dynamic vortex disc along the axial deviation to the static vortex disc,increasing the axial clearance,resulting in the increase of radial gas leak,reducing the volumetric efficiency of the vacuum pump.To avoid this,we must calculate the axial power generated by the compressed gas,and try to balance the gas axial power reliably and reasonably.MMD-2 第 18 屆中國(guó)機(jī)構(gòu)與機(jī)器科學(xué)國(guó)際會(huì)議 4 Fig.3 The influence of the power of axis In the figure 3,1 is fixed vortex plate,2 is dynamic vortex disc,and 3 is stand.This study focus on the conjunction lines based on the arc,the vortex of the intermediate compression chamber and the suction chamber constitute incomplete base circle involutes,which can be made up of arcs and circle involutes.In the exhaust chamber,due to the circle involutes profile,the suffered area of axial gas power on dynamic vortex disc is(2.10)and(2.11),that is:S1332211530.6(1.2)322aa (9)3322111970.61.2322aSa (10)We can respectively calculate the axial power area in accordance with the profile of the intermediate compression chamber and the suction chamber at the different corner:In the intermediate compression chamber,and 0A,that is 00.44,we can calculate the axial power area:S2223(1.37)()()(21.37)AAAa 221(0.6)(2)(20.6)(2)BBBa22122()()2sin()BAAARRR r22sin()tan()2AAr 22sintan()cot()2ABr (11)Firstly,AB,that is 0.441.25,we can get the axial area:S2221(0.6)(2)Ba(2)(20.6)BB222121()()sin22BRRr22sincot()BAr (12)Secondly,2B,that is 1.252,we can get the axial area:2S22140.63/a(13)In the suction chamber,Firstly 0A,that is 00.44,we can get the axial area:3S22341.375/a (14)Secondly 2A,that is 0.442,we can get the axial area:3S22334()(5)a2212sin(22)2AArR 2222sin()sin()2AArRr222sin()cos2AArRarcR 233()(2)AAEAa (15)So the axial gas power on the dynamic vortex disc is:As shown in Figure 5,the spindle force as follows:Fig.5 The force of principal axis 3 Spindle power analysis MMD-2 第 18 屆中國(guó)機(jī)構(gòu)與機(jī)器科學(xué)國(guó)際會(huì)議 5 1KnstisiiVFSpV 3312312KKsssVVSpSpS pVV (16)sp is inhale pressure of conjunction profile oil filter vortex vacuum pump,K is Ratio of Specific Heat.(4)The overturning moment Moving vortex disc movement of the crank pin,the point is not the same perpendicular to the axis of the plane,thus causing dynamic vortex disc overturning due to the cut of point to the resultant force F of the gas force and radial gas forces and drive the overturning moment:2212ttMFHFFFhHh (17)Where h the height of the line-vortex;the distance between the h1-vortex disk drive surface.Overturning moment will increase the gap between the static and dynamic vortex disc uneven,hindering one of the main factors of the oil filter vortex vacuum pump mechanical efficiency and volumetric efficiency.(5)Rotation torque When the base circle center as the moving vortex disk drive center,perpendicular to the tangential direction of the crankshaft,the tangential gas force role in the midpoint of the dynamic vortex disc round and static vortex disc base circle center,so have a moving vortex coiled spindle eccentric line rotating torque,that is,the rotation torque,its direction and moving vortex disk rotation in the same direction.The rotation torque will destroy the normal work of the oil filter vortex vacuum pump,and so must be used in the structural design of the anti-rotation mechanism to strictly limit the rotation of the moving vortex disc.Known gas cut to the force applied to the midpoint of the crank for the analysis of the rotation torque point of the tangential force from the crank centerline to the crank pin center line,shown in figure 4.Tangential force to move to the center of the crank pin,crank pin just cut to the force F role,but also a moment the force M role.Fig.4 Transplant chart of tangent force Torque to force Mthe movement vortex coil crank pin center line along the direction of rotation of the vortex disc revolution;it is called the rotation torque by the following equation for:12MrF 12312r FFF (18)4 Conclusions MMD-2 第 18 屆中國(guó)機(jī)構(gòu)與機(jī)器科學(xué)國(guó)際會(huì)議 Vortex disk automatically cut to the force,eccentric reaction forcesF.The size and role in the direction of the moving vortex disc,the total cut of the same forceBrF,F acting perpendicular to the eccentric sleeve hole center line,the role of the outside in the radial direction.Spindle and eccentric face and eccentric hole on the bottom surface has a compression chamber to the introduction of the back pressure p,so the downward force acting on the spindleF214FD p.The reaction force1Z2Z,the cuts from the main and auxiliary bearings1RZ2RZ,radial reaction force,the axial reaction forcestF.Balance the weight of rotary inertia force 21 1m r 22 2m rand moment of inertia.The frictional torque of the main and sub bearing frictional torque1BM 2BM,dynamic vortex disc crank pinBrM.The driving torque from the drive mechanism 12TTBBMMMM.In the design study of vortex profiles,aiming at the restriction of single profile and its ameliorating or parameter optimization presently,the conjunction profiles bearing on arc-length and circle involutes were studied.This first derived conjunction of line of oil filter vortex vacuum pumps cut to the radial and axial gas force,overturning moment and the rotation torque calculation formula based on the conjunction of line oil filter vortex vacuum pumps.Cross slip ring,moving vortex disc,spindle three main components of the stress analysis,the dynamic equilibrium of the oil filter vortex vacuum pump design,strength design and reliability analysis has laid a solid foundation.Aknowledgments This work was supported by National Natural Science Foundation of China(50805149),Chongqing Science and Technology Committee Science and technology Project Foundation(cstc2011ac6086).Chongqing Education Committee Science and technology Project Foundation(kj110710),Chongqing University of Science and Technology Projects(kjtd201019,kjtd11211),CTBU Doctoral Foundation(1152005).References 1Xu S X,Ma G Y.Air-source heat pump coupled with economized vapor injection scroll vacuum pump and ejector:Design and experimental research.Sci China Tech Sci,2010,53(3):782789 2Lee G H.Performance simulation of scroll vacuum pumps.Proceedings of the Institution of Mechanical Engineers,2002,216:169179 3Chen J,Wang,L C,Li S L.Study and profound analysis on general profile theory of scrolls(in Chinese).Chinese J Mech Eng,2006,42(5):1115 4Wang L C,Chen J,Li S L,et al.Conjugate meshing theory of scroll profiles based on functional expression.Chinese J Mech Eng,2007,43(3):5053 5Gagne D P,Nieter J J.Simulating scroll vacuum pump using a generalized conjugate surface approach.Proceedings of the International Vacuum pump Engineering.Pudue,Purdue University,West Laffette,USA,1994,553558 6Christian G.The geometry of the scroll vacuum pump.Siam Rev,2001,43(1):113126 7Blunier B,Cirrincione G,Herv Y,et al.A new analytical and dynamical model of a scroll vacuum pump with experimental validation.Int J Refrig,2009,32(5):874891 8Zheng X Q,Zhang Y J,Yang M Y.Research and development on transonic vacuum pump of high pressure ratio turbocharger for vehicle internal combustion engines.Author brief introduction:Wang Licun,male,born in 1978,Ph.D.,Professor,College of mechanical engineering,Chongqing Technology and Business University.His main research interest:Mechanical design and theory.Published more than 40 papers and more than 30 papers indexed by SCI/EI,3 invention patents.Sci China Tech Sci,2010,53(3):18171824
收藏