機(jī)械外文文獻(xiàn)翻譯-機(jī)械臂動(dòng)力學(xué)與控制的研究[中文5500字] 【中英文WORD】
機(jī)械外文文獻(xiàn)翻譯-機(jī)械臂動(dòng)力學(xué)與控制的研究[中文5500字] 【中英文WORD】,中文5500字,中英文WORD,機(jī)械外文文獻(xiàn)翻譯-機(jī)械臂動(dòng)力學(xué)與控制的研究[中文5500字],【中英文WORD】,機(jī)械,外文,文獻(xiàn),翻譯,動(dòng)力學(xué),控制,研究,中文,5500,中英文,WORD
2009年IEEE國(guó)際機(jī)器人和自動(dòng)化會(huì)議
神戶國(guó)際會(huì)議中心
日本神戶12-17,2009
機(jī)械臂動(dòng)力學(xué)與控制的研究
拉斯彼得Ellekilde
摘要
操作器和移動(dòng)平臺(tái)的組合提供了一種可用于廣泛應(yīng)用程序高效靈活的操作系統(tǒng),特別是在服務(wù)性機(jī)器人領(lǐng)域。在機(jī)械臂眾多挑戰(zhàn)中其中之一是確保機(jī)器人在潛在的動(dòng)態(tài)環(huán)境中安全工作控制系統(tǒng)的設(shè)計(jì)。在本文中,我們將介紹移動(dòng)機(jī)械臂用動(dòng)力學(xué)系統(tǒng)方法被控制的使用方法。該方法是一種二級(jí)方法,是使用競(jìng)爭(zhēng)動(dòng)力學(xué)對(duì)于統(tǒng)籌協(xié)調(diào)優(yōu)化移動(dòng)平臺(tái)以及較低層次的融合避障和目標(biāo)捕獲行為的方法。
I介紹
在過去的幾十年里大多數(shù)機(jī)器人的研究主要關(guān)注在移動(dòng)平臺(tái)或操作系統(tǒng),并且在這兩個(gè)領(lǐng)域取得了許多可喜的成績(jī)。今天的新挑戰(zhàn)之一是將這兩個(gè)領(lǐng)域組合在一起形成具有高效移動(dòng)和有能力操作環(huán)境的系統(tǒng)。特別是服務(wù)性機(jī)器人將會(huì)在這一方面系統(tǒng)需求的增加。大多數(shù)西方國(guó)家的人口統(tǒng)計(jì)數(shù)量顯示需要照顧的老人在不斷增加,盡管將有很少的工作實(shí)際的支持他們。這就需要增強(qiáng)服務(wù)業(yè)的自動(dòng)化程度,因此機(jī)器人能夠在室內(nèi)動(dòng)態(tài)環(huán)境中安全的工作是最基本的。
圖.1 一臺(tái)由賽格威RMP200和輕重量型庫卡機(jī)器人組成的平臺(tái)
這項(xiàng)工作平臺(tái)用于如圖1所示,是由一個(gè)Segway與一家機(jī)器人制造商制造的RMP200輕機(jī)器人。其有一個(gè)相對(duì)較小的軌跡和高機(jī)動(dòng)性能的平臺(tái)使它適應(yīng)在室內(nèi)環(huán)境移動(dòng)。庫卡工業(yè)機(jī)器人具有較長(zhǎng)的長(zhǎng)臂和高有效載荷比自身的重量,從而使其適合移動(dòng)操作。
當(dāng)控制移動(dòng)機(jī)械臂系統(tǒng)時(shí),有一個(gè)選擇是是否考慮一個(gè)或兩個(gè)系統(tǒng)的實(shí)體。在參考文獻(xiàn)[1]和[2]中是根據(jù)雅可比理論將機(jī)械手末端和移動(dòng)平臺(tái)結(jié)合在一起形成一個(gè)單一的控制系統(tǒng)。另一方面,這項(xiàng)研究發(fā)表在[3]和[4],認(rèn)為它們?cè)谠O(shè)計(jì)時(shí)是獨(dú)立的實(shí)體,但不包括兩者之間的限制條件,如延伸能力和穩(wěn)定性。
這種控制系統(tǒng)的提出是基于動(dòng)態(tài)系統(tǒng)方法[5], [6]。它分為兩個(gè)層次,其中我們?cè)谳^低的水平,并考慮到移動(dòng)平臺(tái)作為兩個(gè)獨(dú)立的實(shí)體,然后再以安全的方式結(jié)合在上層操縱者。在本文中主要的研究目的是展現(xiàn)動(dòng)力系統(tǒng)方法可以應(yīng)用于移動(dòng)機(jī)械臂和使用各級(jí)協(xié)調(diào)行為的控制。
本文剩下的安排如下。第二部分介紹系統(tǒng)的總體結(jié)構(gòu)設(shè)計(jì),其次是機(jī)械手末端移動(dòng)平臺(tái)的控制在第三第四部分講述。在第五部分我們?cè)诮Y(jié)束本文之前將顯示一作實(shí)驗(yàn)。然而, 首先與動(dòng)力學(xué)系統(tǒng)有關(guān)工作總結(jié)與方法將在在部分I-A提供。
A.相關(guān)工作
動(dòng)力學(xué)系統(tǒng)接近[5],[6]為控制機(jī)器人提供一套動(dòng)作的框架,例如障礙退避和目標(biāo)捕捉。每個(gè)動(dòng)作通過一套一個(gè)非線性動(dòng)力學(xué)系統(tǒng)的attractors和repellors來完成。這些通過向量場(chǎng)的簡(jiǎn)單的加法被結(jié)合在一起來完成系統(tǒng)的整體動(dòng)作。動(dòng)力系統(tǒng)的方法涉及到更廣泛的應(yīng)用勢(shì)場(chǎng)法[7],但具有一定的優(yōu)勢(shì)。這里勢(shì)場(chǎng)法的行為是由后場(chǎng)梯度形成的結(jié)果,行為變量,如航向和速度,可直接運(yùn)用動(dòng)力系統(tǒng)控制的方法。
成本相對(duì)較低的計(jì)算與方法有關(guān),使得它在動(dòng)態(tài)環(huán)境中在線控制適宜,允許它即使在相當(dāng)?shù)偷乃接邢薜挠?jì)算能力平臺(tái)[8]實(shí)施。傳感器的魯棒性在人聲嘈雜中顯示[9]和[10]其中一個(gè)是由紅外傳感器和麥克風(fēng)的結(jié)合,當(dāng)避障和目標(biāo)獲取時(shí)使用。盡管能解決各種各樣的任務(wù),但它僅是一個(gè)局部的方法,為了其他的任務(wù)和使命級(jí)計(jì)劃(即參見[11])其他的方法應(yīng)該被釆用。
當(dāng)多行為被結(jié)合時(shí),在[5]和[6]的缺點(diǎn)是由潛在的假的因子引起的。為了克服這個(gè)問題[12]介紹了一種基于競(jìng)爭(zhēng)動(dòng)態(tài)的行為比重。每個(gè)行為的影響是控制使用一個(gè)相關(guān)的競(jìng)爭(zhēng)優(yōu)勢(shì),再加上定義的行為之間有競(jìng)爭(zhēng)力的相互作用,控制重物。如果所有的行為之間的競(jìng)爭(zhēng)性相互作用是必需的,這種方法可以推廣到任意數(shù)n,行為,除了這樣一個(gè)最壞情況的復(fù)雜度
在現(xiàn)實(shí)世界中使用這種方法的競(jìng)爭(zhēng)態(tài)勢(shì)室內(nèi)實(shí)驗(yàn)中可以找到[13],[14]。[13]是只在有標(biāo)題方向的車輛上使用,而在[14]中航向和速度均得到控制。[15]提供了一個(gè)為速度性能簡(jiǎn)短的策略討論。
在[16]中提到動(dòng)力系統(tǒng)的方法不僅被用于平面移動(dòng)機(jī)器人,同時(shí)也可以作為控制機(jī)械手工具。另外運(yùn)用產(chǎn)生極限環(huán)Hopf振蕩器動(dòng)力系統(tǒng)的更復(fù)雜的動(dòng)力系統(tǒng)也可被使用。 [17]展現(xiàn)出不同形狀的極限環(huán)是如何產(chǎn)生的,其可運(yùn)用于避障軌跡的生成。[18]中介紹到使用Hopf振蕩器產(chǎn)生一個(gè)定時(shí)的軌跡,實(shí)現(xiàn)了機(jī)械手可以接住從桌子上面滾下來的球。 動(dòng)力系統(tǒng)的方法不僅可以用于控制的工具,也可以控制7自由度機(jī)械手多余的動(dòng)作這一 點(diǎn)在[19 ]中得到論證。
II.總體結(jié)構(gòu)
我們整個(gè)系統(tǒng)的整體架構(gòu)如圖2所示。在賽格威平臺(tái)中為了控制移動(dòng)平臺(tái),兩個(gè)低級(jí)別的性能被使用:一個(gè)用于目標(biāo)捕獲和另一個(gè)是避障。運(yùn)用競(jìng)爭(zhēng)動(dòng)態(tài)的動(dòng)作被混合在一起是為了做出移動(dòng)平臺(tái)希望得到的指定的移動(dòng)動(dòng)作。同樣,在競(jìng)爭(zhēng)態(tài)勢(shì)的基礎(chǔ)上目標(biāo)捕獲和機(jī)械手避障行為的融合給機(jī)器人收縮下達(dá)指令。當(dāng)目標(biāo)不在范圍內(nèi),應(yīng)收回機(jī)械手到一個(gè)安全的位置,這是機(jī)械手縮回行為的目的。最后融合是以一個(gè)安全的方式把所有的控制結(jié)合在一起,這樣一來目標(biāo)捕獲和收回行為不互相干擾,另外移動(dòng)平臺(tái)在不開始朝著新的目標(biāo)之前,移動(dòng)機(jī)械手巳被收回。
用、和分別代表機(jī)械手移動(dòng)、機(jī)械手捕獲和機(jī)械手收縮行為的影響,控制信號(hào)和通過(1)(2)移動(dòng)平臺(tái)和機(jī)械手。
(1)
(2)
其中( )是指控制輸入信號(hào)以控制在第三節(jié)中描述的平臺(tái)的左,右側(cè)車輪;和是在第四節(jié)描述的機(jī)械手關(guān)節(jié)速度。
障礙
動(dòng)作
運(yùn)動(dòng)結(jié)合
結(jié)合
目標(biāo)
設(shè)備
賽格威
障礙
操作結(jié)合
結(jié)合
目標(biāo)
庫卡
機(jī)器人
操作收回
圖.2.控制系統(tǒng)的體系結(jié)構(gòu)
A. 競(jìng)爭(zhēng)動(dòng)態(tài)
這種競(jìng)爭(zhēng)態(tài)勢(shì)釆用的方法是以[12]為基礎(chǔ)的,除了附加參數(shù)用于控制在[14]中的轉(zhuǎn)換率。動(dòng)力系統(tǒng)釆用(3)因此給予:
(3)
其中是b和r競(jìng)爭(zhēng)優(yōu)勢(shì)產(chǎn)生的參數(shù),b是和b相互競(jìng)爭(zhēng)作用的參數(shù)。
1) 移動(dòng):在移動(dòng)平臺(tái)遠(yuǎn)離目標(biāo)時(shí)它的競(jìng)爭(zhēng)優(yōu)勢(shì)應(yīng)該被加強(qiáng);標(biāo)被捕獲時(shí)移動(dòng)平臺(tái)的競(jìng)爭(zhēng)優(yōu)勢(shì)應(yīng)該被降低。這是通過(4)實(shí)現(xiàn)的。
(4)
其中,決定如何迅速的改變這種優(yōu)勢(shì),是指到目標(biāo)的距離和是指移動(dòng)平臺(tái)移動(dòng)目標(biāo)所需的最小距離。
移動(dòng)的行為,沒有能力進(jìn)行互動(dòng),并抑制其他行為,因此它的競(jìng)爭(zhēng)性相互作用被設(shè)置為0。
2) 機(jī)械手捕獲目標(biāo):A移動(dòng)平臺(tái)接近他的目標(biāo)時(shí),機(jī)械手捕獲目標(biāo)的動(dòng)作應(yīng)該別加強(qiáng)。這樣的競(jìng)爭(zhēng)優(yōu)勢(shì)將被定義為:
(5)
激活距離必須大于來確保其行為被激活。此動(dòng)作沒有和其他的動(dòng)作有直接聯(lián)系,因此它的相互作用參數(shù)設(shè)置為0。
3) 機(jī)械手收縮:收回動(dòng)作應(yīng)該被激活當(dāng)對(duì)面目標(biāo)被捕獲之后,因此
(6)
要有一個(gè)非常小的過渡時(shí)間,這可以防止在同一時(shí)間活動(dòng)的機(jī)械臂捕獲和收縮動(dòng)作,因此,我們可以設(shè)置由于機(jī)械手收縮和移動(dòng)動(dòng)作的聯(lián)系,當(dāng)機(jī)械手原理自動(dòng)巡航裝置時(shí)我們希望能夠取消停止移動(dòng)。因此這種相互作用定義為:
(7)
其中和,是機(jī)械手當(dāng)前和原始配置參數(shù),是指目標(biāo)最近的距離和指定如何使相互作用迅速變化的參數(shù)。
III.移動(dòng)平臺(tái)的控制
該移動(dòng)平臺(tái)的控制,結(jié)構(gòu)與參考文獻(xiàn)[14]中表述的非常相似,但也有一些不同。剛開始時(shí)目標(biāo)捕獲和避障指令被使用。緊接著除走廊和墻壁避障不包括在內(nèi),伹將沿直線擴(kuò)展。第二個(gè)領(lǐng)域,不同的是這項(xiàng)工作的障礙是如何找出障礙密度的計(jì)算方法。具體的論述在III-D部分。
為了使控制系統(tǒng)能夠根據(jù)具體的環(huán)境進(jìn)行導(dǎo)航。我們所使用的方法是基于參考文獻(xiàn)[20]中論述的方法,它運(yùn)用里程計(jì)和激光測(cè)距相結(jié)合對(duì)所在環(huán)境中地圖的主導(dǎo)線匹配測(cè)量。
該平臺(tái)控制編碼的使用方向:;速度:V,它在一個(gè)控制輸入系統(tǒng)的結(jié)果數(shù)的值是由兩部分組成,和,這里合并為
(8)
其中和是被Eq限制的。(3)中的競(jìng)爭(zhēng)優(yōu)勢(shì)和相互作用在III-C中有詳細(xì)的描述。
作為控制輸入我們需要一個(gè)表達(dá)式對(duì)移動(dòng)平臺(tái)的左右輪進(jìn)行控制,這里用和分別作為左,右側(cè)車輪的表達(dá)參數(shù)。要使獲得這些數(shù)據(jù)集成得到v,連同所需的旋轉(zhuǎn)速度時(shí),車輪直徑和車輪之間的距離可以用數(shù)據(jù)庫來計(jì)算控制輸入:
(9)
(10)
這里車輪需要的速度差被定義為:
(12)
A. 動(dòng)態(tài)目標(biāo):
捕獲目標(biāo)動(dòng)作的基本動(dòng)力是:
(13)
(14)
其中和是吸引子的優(yōu)勢(shì)參數(shù)和表示運(yùn)動(dòng)到目標(biāo)的方向。常數(shù)表達(dá)出機(jī)械手到目標(biāo)之間的距離和所需的速度關(guān)系。最后最大速度是指移動(dòng)平臺(tái)所允許的最大速度。
B. 障礙動(dòng)態(tài)
假定一個(gè)距離,方句參數(shù)表示機(jī)械手到第i個(gè)障礙的方向,在避障的動(dòng)力學(xué)中用公式(15) (16)表不如下:
(15)
(16)
其中
動(dòng)態(tài)參數(shù)包括三個(gè)要素:(一)障礙物的相對(duì)方向,(二)例系數(shù),其中根據(jù)距離決定衰減的程度。(三)另一個(gè)比例系數(shù)根據(jù)到障礙的方向而定的,并運(yùn)用保兩障礙間的attractor產(chǎn)生,如果機(jī)器人可以在確保安全距離DS下通過。我們可以在參考文獻(xiàn)[14]中看到具體的描述。
對(duì)于是表示調(diào)整速度轉(zhuǎn)向,但確保最小速度是被保留的。
運(yùn)用公式(17)獲取我們總結(jié)所有障礙的值:
(17)
C. 競(jìng)爭(zhēng)動(dòng)態(tài)
在競(jìng)爭(zhēng)態(tài)勢(shì)的運(yùn)算如上面所述公式(3)控制的。下面是最大的競(jìng)爭(zhēng)優(yōu)勢(shì)和兩種動(dòng)作的相互作用。
1) 目標(biāo):每當(dāng)一個(gè)目標(biāo)是存在的,競(jìng)爭(zhēng)優(yōu)勢(shì)的參數(shù)就被設(shè)置為,否則設(shè)置為。
目標(biāo)動(dòng)作有能力影響和抑制避障動(dòng)作,目標(biāo)之間的距離和最近的目標(biāo)之間的比例足以確保向目標(biāo)移動(dòng)的動(dòng)作是無碰撞運(yùn)動(dòng)。這時(shí)建模為:
(18)
其中到最近障礙物的距離,是一個(gè)如何快速是動(dòng)作相互影響的增益常數(shù),我們將開始抑制避障時(shí)表示障礙和目標(biāo)之間的距離比。
2) 障礙:該障礙動(dòng)作的競(jìng)爭(zhēng)優(yōu)勢(shì)有公式(19)控制:
(19)
其中是障礙密度在第三節(jié)-D被定義。
這種相互作用被定義為
(20)
第一部分抑制目標(biāo)動(dòng)作當(dāng)障礙濃度超過臨界值時(shí),最后一部分可以確保這只是發(fā)生在由于的原因避障沒有被抑制。
D.障礙密度的計(jì)算
假設(shè)一系列的距離,,移動(dòng)平臺(tái)和障礙的密度,計(jì)算公式為
(21)
此處的定義不同于[14]中的。公式化的主要問題是,我們不能區(qū)分物體的相對(duì)多遠(yuǎn)和一個(gè)對(duì)象相對(duì)多近。例如2米外有5個(gè)對(duì)象的密度定義成相同的密度與40厘米的距離之外的一個(gè)對(duì)象。根據(jù)指數(shù)函數(shù)的性質(zhì)在場(chǎng)景中的單個(gè)對(duì)象永遠(yuǎn)不能導(dǎo)致超1。用于切換到避障動(dòng)作的臨界值將因此必須小于1,但一個(gè)場(chǎng)景中有多樣的障礙往往臨界值設(shè)置的更低。
此外,發(fā)現(xiàn)用代替參數(shù)調(diào)整更容易,因?yàn)槲覀兛梢钥紤]其作為距離的反比密度。這也造成了當(dāng)越來越接近一個(gè)障礙時(shí)密度増長(zhǎng)非常迅速,從而可以迅速迫使動(dòng)作改變。
IV.機(jī)械手的控制
我們將這個(gè)問題分成兩部分:
1) 確定機(jī)械手的運(yùn)動(dòng),從當(dāng)前位置到目標(biāo),同時(shí)避免障礙。
2) 計(jì)算所需刀具的逆運(yùn)動(dòng)的速度。
第二部分是一個(gè)很好的理解問題,這項(xiàng)工作可以運(yùn)用在參考文獻(xiàn)[23]中描述的逆運(yùn)動(dòng)學(xué)方法解決。這種方法包括機(jī)器人運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)的局限性,如關(guān)節(jié)的位置,速度和加速度的限制。此外,在此方法的基礎(chǔ)上,進(jìn)行二次優(yōu)化獲得方法已被證明表現(xiàn)很突出。
該機(jī)械手的運(yùn)動(dòng)受機(jī)器人控制的目標(biāo)和障礙動(dòng)作限制,為此和,是相關(guān)的。由于逆運(yùn)動(dòng)學(xué)的輸入需要一個(gè)六維旋轉(zhuǎn)速度,因此這些動(dòng)作必須設(shè)置一個(gè)變數(shù),它可以集成所需的速度
(22)
其中,和是從目標(biāo)和避障中得到的。
A. 目標(biāo)動(dòng)作
到目標(biāo)行為的輸入是當(dāng)前和所需的工具轉(zhuǎn)換和。從這些我們可以計(jì)算出所需的六維速度螺桿。為避免要求不切實(shí)際的快速運(yùn)動(dòng)它的范圍是和,和代表最大允許的機(jī)床直線和旋轉(zhuǎn)速度。
計(jì)算
(23)
我們得到了當(dāng)前速度預(yù)期的變化。
B. 障礙動(dòng)作
作為輸入避障動(dòng)作的參數(shù),釆用當(dāng)前笛卡爾速度,釆用最近的障礙為軌道,給出機(jī)械手和障礙物之間方向和距離。我們現(xiàn)在要根據(jù)到障礙物的方向和距離計(jì)算笛卡爾速度的變化,并分別用和表示。
1) 施力方叫:根據(jù)當(dāng)前機(jī)械手的速度V,我們計(jì)算向量相互兩者之間的角度為
(24)
在機(jī)械手尺寸方向變化的大小,用(25)計(jì)算
(25)
其中是repellor的數(shù)值,根據(jù)距離控制衰減,控制相對(duì)障礙之間的角度。被用于計(jì)算預(yù)期的機(jī)械手方向的改變:
(26)
根據(jù)所有障礙物的作用,我們可以根據(jù)障礙物的方向計(jì)算機(jī)械手運(yùn)動(dòng)的改變:
(27)
2) 動(dòng)力學(xué)速度:對(duì)速度的動(dòng)態(tài)控制相似于Eq。障礙i的作是:
(28)
其中。集合所有障礙的作用變成:
(29)
C. 競(jìng)爭(zhēng)動(dòng)態(tài)
1) 目標(biāo)動(dòng)作:對(duì)于移動(dòng)平臺(tái)當(dāng)目標(biāo)存在目標(biāo)動(dòng)作的競(jìng)爭(zhēng)優(yōu)勢(shì)值設(shè)置為0.5,否則設(shè)置為-0.5。
當(dāng)?shù)侥繕?biāo)的距離和最近障礙物的距離之間的比例系數(shù)超過,目標(biāo)與障礙物之間的相互作用需要被重新設(shè)置,避障作用受到限制,這是有公式(30)實(shí)現(xiàn):
(30)
其中是機(jī)床和目標(biāo)的距離;是一個(gè)如何迅速改變值的增益系數(shù)。
2) 障礙:該障礙動(dòng)作的競(jìng)爭(zhēng)優(yōu)勢(shì)和在第三節(jié)-C表述的相同:
(31)
用Eq (21)進(jìn)行密度計(jì)算,但用障礙和機(jī)械手之間的距離代替障礙和移動(dòng)平臺(tái)的距離。這種相互之間的作用用公式確定:
(32)
其中到機(jī)械手最接近目標(biāo)時(shí),有助于撤銷臂章動(dòng)作。
D. 收縮
收縮動(dòng)作是在關(guān)節(jié)處直接運(yùn)作的。通過定義,,其中是指機(jī)械手原始的收縮數(shù)據(jù)配置,我們可能計(jì)算關(guān)節(jié)速度為:
(33)
其中是關(guān)節(jié)最大的速度,為attractor的作用參數(shù)。
V.實(shí)驗(yàn)
本實(shí)驗(yàn)的目的主要是展示了移動(dòng)平臺(tái)和機(jī)械手的協(xié)調(diào)。以前的工作已經(jīng)展示了動(dòng)力系統(tǒng)方面的方針與導(dǎo)航的能力通過一個(gè)環(huán)境中移動(dòng)機(jī)器人[13] [14]和指導(dǎo)一個(gè)機(jī)器人繞過障礙[16]。
(a)移向目標(biāo)(t=0s) (b)圖像伺服(t=28s)
(c)移動(dòng)到目標(biāo)位置(t=40s) (d)完成動(dòng)作(t=72s)
圖.3移動(dòng)機(jī)器人實(shí)驗(yàn)。假定環(huán)境和目標(biāo)重物的角度是不變的。
在實(shí)驗(yàn)中使用的平臺(tái)如圖1所示,是由一個(gè)賽格威RMP200和輕重量型庫卡機(jī)器人與崇德PG70平行爪裝備組成。該平臺(tái)具有一個(gè)SICK LMS291定位和避障裝Unibrain Fire-iFireWire攝像頭的激光掃描儀,用于機(jī)械手瞄準(zhǔn)并抓起目標(biāo)。不幸的是我們沒有足夠的時(shí)間來連接夾持器和控制目標(biāo)。因此,它僅僅是定位和準(zhǔn)備抓。但實(shí)際上從未關(guān)閉的抓手。由于控制框架我們使用了Microsoft Robotics Sludiol.5,這提供了一個(gè)從傳感器的各種輸入,到驅(qū)動(dòng)器輸出,并確保不同的控制算法同時(shí)運(yùn)作的方法。
該賽格威運(yùn)動(dòng)和大多數(shù)機(jī)械手運(yùn)動(dòng)是基于特定的笛卡爾坐標(biāo)定位目標(biāo)的。但是,一旦目標(biāo)在toolmourUed相機(jī)視線范圍內(nèi),機(jī)械手依靠視覺輸入指導(dǎo)切換。第五部分A將會(huì)詳細(xì)闡述視覺伺服系統(tǒng)方法,緊接著在第五部分B中會(huì)提供測(cè)試結(jié)果。
圖.4.檢測(cè)使用微軟機(jī)器人SimpleVision方面的服務(wù)特征.黑白邊邊框表示特征識(shí)別。
A. 伺服系統(tǒng)
對(duì)于最終機(jī)械手的定位是使用視覺伺服系統(tǒng)方法獲得標(biāo)準(zhǔn)圖像進(jìn)行定位的。特征檢測(cè)是根據(jù)Microsoft Robotics Studio的SimpleVision服務(wù)而測(cè)定的,獲得能夠識(shí)別顏色的斑點(diǎn)。在這些試驗(yàn)中獲得結(jié)果我們用綠色標(biāo)記標(biāo)出,如圖4所示。我們希望該機(jī)械手的方向是同定的,因此僅僅需要3個(gè)自由度(自由度)的位置應(yīng)該被相關(guān)的視覺輸入的影響。這些自由度兩個(gè)是由BLOB的定位控制,其中一個(gè)應(yīng)在圖像中心位置。最后的自由度是由BLOB的大小決定的。
B.測(cè)試結(jié)果
如圖3所示,移動(dòng)機(jī)械手的任務(wù)是移動(dòng)一個(gè)瓶子從圖像的桌子上移動(dòng)到右邊相對(duì)的較遠(yuǎn)的箱子里。機(jī)器人移動(dòng)、機(jī)械手收縮和目標(biāo)行為有關(guān)的數(shù)據(jù)關(guān)系可以在圖5中看到。
圖.5機(jī)械手運(yùn)行時(shí)各項(xiàng)的比例系數(shù)表
首先移動(dòng)機(jī)械手收縮和移動(dòng)指令被激活引起移動(dòng)平臺(tái)移向目標(biāo),同時(shí)手臂保持原始的配置裝態(tài)。經(jīng)過約7秒之內(nèi)達(dá)到目標(biāo)并獲得目標(biāo)信號(hào),因此機(jī)械手收縮動(dòng)作被取消,機(jī)械手捕獲動(dòng)作被激活。不久后,Segway動(dòng)作也被取消,讓機(jī)械手拿起無干擾的目標(biāo)。然而機(jī)械手運(yùn)動(dòng)會(huì)異致賽格威漂移,因此要過一會(huì)知道經(jīng)過20s之后移動(dòng)平臺(tái)重新被激活,在這里移動(dòng)平臺(tái)又達(dá)到了預(yù)期目標(biāo)的相對(duì)位置。視覺伺服指揮機(jī)械手到如圖3 (b)所示的狀態(tài)。經(jīng)過約30秒鐘,瓶子應(yīng)該被抓手拾起的和新的目標(biāo)是給予,造成機(jī)械手收縮動(dòng)作被重新激活而機(jī)械手捕獲動(dòng)作被取消。同時(shí)移動(dòng)平臺(tái)移動(dòng)動(dòng)作也被激活,但當(dāng)機(jī)械臂被收回時(shí)移動(dòng)平臺(tái)的移動(dòng)動(dòng)作會(huì)迅速被取消。完成之后控制移動(dòng)平臺(tái)移動(dòng)到所需位置放置,進(jìn)而機(jī)械手被激活把目標(biāo)放到箱子里。
VI.結(jié)論
本文已經(jīng)介紹了如何使動(dòng)態(tài)系統(tǒng)的方法應(yīng)用于移動(dòng)操作。此文的主要結(jié)論包括兩個(gè)層次,其中競(jìng)爭(zhēng)態(tài)勢(shì)是用于移動(dòng)平臺(tái)的整體協(xié)調(diào)和機(jī)械手運(yùn)動(dòng)以及避障和目標(biāo)獲取等動(dòng)作。該方法首先已被證實(shí)在模擬環(huán)境中,其次也通過實(shí)際工作的驗(yàn)證。
實(shí)驗(yàn)用的系統(tǒng)是Microsoft Robotics Studiol.5 (MSRS)。該系統(tǒng)最初是模擬和參數(shù)的調(diào)整,釆用模擬器進(jìn)行?;谀M器的物理參數(shù)理想的轉(zhuǎn)向。整個(gè)MSRS是一個(gè)執(zhí)行工作有益環(huán)境的平臺(tái)。雖然控制是以20Hz被執(zhí)行的,但由于Windows XP的非實(shí)性,動(dòng)作間會(huì)有異常值出現(xiàn)。
——本文出自2009年IEEE國(guó)際機(jī)器人和自動(dòng)化會(huì)議論文集
參考文獻(xiàn)
[1] H. Seraji,A Unified Approach to Motion Control of Mobile Manipulators, The International Journal of Robotics Research, Vol. 17,No. 2, 1998,pp. 107-118.
[2] E. Papadopoulos,J. Poulakakis, Planning and Model-Based Control for Mobile Manipulators, Proceedings of the IROS’OO,2000,pp. 1810-1815.
[3] Q. Huang, K. Tanie, S. Sugano, Coordinated Motion Planning for a Mobile Manipulator Considering Stability and Manipulation, Thee International Journal of Robotics Research, Vol. 19,No. 8,2000, pp. 732-742.
[4] D.H. Shin, B.S. Hamenr, S. Singh, M. Hwangbo,Motion Planning for a Mobile Manipulator with Imprecise Locomotion, Proceddings of the IROS’03,2003, 847-853.
[5] G. Sch. oner,M. Dose, A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion, Robotics and Autonomous Systems, Vol. 10, 1992, pp. 253-267.
[6] G. Sch. oner,M. Dose, C. Engels, Dynamics of behavior: theory and applications for autonomous robot architecture. Robotics and Autonomous Systems, Vol. 16,1995,pp. 213-245.
[7] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, Vol. 5,No. I,1986,pp. 90-98.
[8] E. Bicho, G. Sch. oner,The dynamic approach to autonomous robotics demonstrated on a low-level vehicle platform. Robotics and Autonomous Systems, Vol. 21, 1997, pp. 23-35.
[9] E. Bicho, P. Mallet, G. Sch.oner,Using Attractor Dynamics to Control Autonomous Vehicle Motion. Proceedings of the IECON’98,Vol. 2,1998,pp. 1176-1181.
[10] E. Bicho, P. Mallet, G. Sch. oner, Target Representation on an Autonomous Vehicle with Low-Level Sensors The International Journal of Robotics Research, Vol.19,No. 5,2000, pp. 424-447.
[11] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor,W. Burgard,L.E. Kavraki,S. Thrun, Principles of Robot Motion . The MIT Press, 2005.
[12] E.W. Large, H.I. Christensen, R. Bajcsy, Scaling the Dynamic Approach to Path Planning and Control: Competition among Behavioral Constraints. The International Journal of Robotics Research, Vol. 18,No. 1,pp. 37-58.
[13] P. Althaus, H.I. Christensen, F. Hoffmann,Using the Dynamical System Approach to Navigate in Realistic Real-World Environments. Proceedings of IROS’OI,Vol. 2,2001,pp. 1023-1029.
[14] P. Althaus, Indoor Navigation for Mobile Robots: Control and Representations, Ph.d. Dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden, 2003.
[15] S. Goldenstein, E. Large, D. Metaxas, Non-linear dynamical system approach to behavior modeling, The Visual Computer, Vol. 15,1999,pp. 349-364.
[16] I. Iossifidic,G. Sch'oner, Autonomous reaching and obstacle avoidance with the anthropomorphic arm of a robotics assistant using the attractor dynamics approach, Proceedings of ICRA,04,2004,pp. 4295-4300.
[17] L.-P. Ellekilde,J.W. Perram, Tool Center Trajectory Planning for Industrial Robot Manipulators Using Dynamical Systems, The International Journal of Robotics Research, Vol. 24,No. 5, 2005,pp. 385-396.
118] C. Santos, M. Ferreira, Ball Catching by a Puma Arm: a Nonlinear Dynamical Systems Approach, Proceedings of IROS’06, 2006, pp.916-921
[19] I. Iossifidic, G. Schooner, Dynamical Systems Approach for the Autonomous Avoidance of Obstacles and Joint-limits for an Redundant Robot Arm. Proceedings of the IROS,06,2006, pp. 580-585.
[20] P. Jensfelt, H.I. Christensen, Pose tracking using laser scanning and minimalistic environment models, IEEE Transactions on Robotisc and Automation, Vol. 17,No. 2,2001, pp. 138-147.
[21] J. Forsberg, P. A° hman,. Wemersson, The Hough transform inside the feedback loop of a mobile robot, Proceedings of ICRA, Vol I, 1993,pp. 791-798.
[22] K.O. Arras, R.Y. Siegwart, Feature Extraction and scene interpredation for map-based nagivation and map building, Proceedings of SPIE, Mobile Robotics XII,Vol. 3210,1997,pp. 42-53.
[23] L.-P. Ellekilde, P. Favrholt, M. Paulin, H.G. Petersen, Robust control for high-speed visual servoing applications, International Journal of Advanced Robotic Systems,Vol. 4,No.3,2007,pp.272-292.
收藏