《(統(tǒng)考版)高考數(shù)學二輪復習 專題限時集訓14 導數(shù)(含解析)(文)-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關《(統(tǒng)考版)高考數(shù)學二輪復習 專題限時集訓14 導數(shù)(含解析)(文)-人教版高三數(shù)學試題(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題限時集訓(十四) 導數(shù)
1.(2019·全國卷Ⅰ)已知函數(shù)f(x)=2sin x-xcos x-x,f′(x)為f(x)的導數(shù).
(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點;
(2)若x∈[0,π]時,f(x)≥ax,求a的取值范圍.
[解] (1)證明:設g(x)=f′(x),則g(x)=cos x+xsin x-1,g′(x)=xcos x.
當x∈時,g′(x)>0;當x∈時,g′(x)<0,所以g(x)在上單調遞增,在上單調遞減.
又g(0)=0,g>0,g(π)=-2,
故g(x)在(0,π)存在唯一零點.
所以f′(x)在(0,π)存在唯一零點.
2、(2)由題設知f(π)≥aπ,f(π)=0,可得a≤0.
由(1)知,f′(x)在(0,π)只有一個零點,設為x0,且當x∈(0,x0)時,f′(x)>0;
當x∈(x0,π)時,f′(x)<0,所以f(x)在(0,x0)上單調遞增,在(x0,π)上單調遞減.
又f(0)=0,f(π)=0,所以當x∈[0,π]時,f(x)≥0.
又當a≤0,x∈[0,π]時,ax≤0,故f(x)≥ax.
因此,a的取值范圍是(-∞,0].
2.(2019·全國卷Ⅲ)已知函數(shù)f(x)=2x3-ax2+2.
(1)討論f(x)的單調性;
(2)當0<a<3時,記f(x)在區(qū)間[0,1]的最大值為M
3、,最小值為m,求M-m的取值范圍.
[解] (1)f′(x)=6x2-2ax=2x(3x-a).
令f′(x)=0,得x=0或x=.
若a>0,則當x∈(-∞,0)∪時,f′(x)>0,
當x∈時,f′(x)<0,
故f(x)在(-∞,0),單調遞增,在單調遞減;
若a=0,f(x)在(-∞,+∞)單調遞增;
若a<0,則當x∈∪(0,+∞)時,f′(x)>0,
當x∈時,f′(x)<0,
故f(x)在,(0,+∞)單調遞增,在單調遞減.
(2)當0<a<3時,由(1)知,f(x)在單調遞減,在單調遞增,所以f(x)在[0,1]的最小值為f=-+2,最大值為f(0)=2或f
4、(1)=4-a.
于是m=-+2,M=
所以M-m=
當0<a<2時,可知2-a+單調遞減,
所以M-m的取值范圍是.
當2≤a<3時,單調遞增,
所以M-m的取值范圍是.
綜上,M-m的取值范圍是.
3.(2018·全國卷Ⅰ)已知函數(shù)f(x)=aex-ln x-1.
(1)設x=2是f(x)的極值點,求a,并求f(x)的單調區(qū)間;
(2)證明:當a≥時,f(x)≥0.
[解] (1)f(x)的定義域為(0,+∞),f′(x)=aex-.
由題設知,f′(2)=0,所以a=.
從而f(x)=ex-ln x-1,f′(x)=ex-.
當0
5、
當x>2時,f′(x)>0.
所以f(x)在(0,2)單調遞減,在(2,+∞)單調遞增.
(2)證明:當a≥時,f(x)≥-ln x-1.
設g(x)=-ln x-1,則g′(x)=-.
當01時,g′(x)>0.所以x=1是g(x)的最小值點.
故當x>0時,g(x)≥g(1)=0.
因此,當a≥時,f(x)≥0.
4.(2020·全國卷Ⅲ)已知函數(shù)f(x)=x3-kx+k2.
(1)討論f(x)的單調性;
(2)若f(x)有三個零點,求k的取值范圍.
[解] (1)f′(x)=3x2-k.
當k=0時,f(x)=x3,故f(x)在(
6、-∞,+∞)單調遞增.
當k<0時,f′(x)=3x2-k>0,故f(x)在(-∞,+∞)單調遞增.
當k>0時,令f′(x)=0,得x=±.當x∈時,f′(x)>0;
當x∈時,f′(x)<0;當x∈時,f′(x)>0.故f(x)在,單調遞增,在單調遞減.
(2)由(1)知,當k≤0時,f(x)在(-∞,+∞)單調遞增,f(x)不可能有三個零點.
當k>0時,x=-為f(x)的極大值點,x=為f(x)的極小值點.此時,-k-1<-<<k+1且f(-k-1)<0,f(k+1)>0,f>0.根據(jù)f(x)的單調性,當且僅當f<0,即k2-<0時,f(x)有三個零點,解得k<.因此k的取值
7、范圍為.
1.(2020·長沙模擬)已知函數(shù)f(x)=x--4ln x.
(1)求f(x)的單調區(qū)間;
(2)判斷f(x)在(0,10]上的零點的個數(shù),并說明理由.(提示:ln 10≈2.303)
[解] (1)函數(shù)f(x)的定義域{x|x>0},
f′(x)=1+-==.
在區(qū)間(1,3)上,f′(x)<0,f(x)單調遞減,
在區(qū)間(0,1),(3,+∞)上,f′(x)>0,f(x)單調遞增,
所以f(x)單調遞增區(qū)間(0,1),(3,+∞);
f(x)單調遞減區(qū)間(1,3).
(2)由(1)知,f(1)=1-3-4×0=-2<0,
f(3)=3-1-4ln 3=
8、2-4ln 3<0,
f(10)=10--4ln 10=-4ln 10≈9.7-4×2.303>0,
所以函數(shù)f(x)在(0,10]上的零點有一個.
2.(2020·蕪湖模擬)已知函數(shù)f(x)=aex-2x,a∈R.
(1)求函數(shù)f(x)的極值;
(2)當a≥1時,證明:f(x)-ln x+2x>2.
[解] (1)f′(x)=aex-2,
當a≤0時f′(x)<0,f(x)在R上單調遞減,則f(x)無極值.
當a>0時,令f′(x)=0得x=ln,f′(x)>0得x>ln,f′(x)<0得x
9、 ,無極大值.
綜上:當a≤0時,f(x)無極值.
當a>0時,f(x)的極小值為f=2-2ln ,無極大值.
(2)當a≥1時,f(x)-ln x+2x≥ex-ln x,
令g(x)=ex-ln x-2,g′(x)=ex-(x>0),
令g′(x)=0得x=x0,因為g′(x)在(0,+∞)為增函數(shù),
所以函數(shù)g(x)在(0,x0)上單調遞減函數(shù),在(x0,+∞)上單調遞增函數(shù),所以g(x)≥g(x0)=ex0-ln x0-2=+x0-2(x0≠1)>0.即得證.
3.(2020·鄭州一中適應性檢測)已知函數(shù)f(x)=x2-(a+1)x+aln x.
(1)討論函數(shù)f(x)的
10、單調性;
(2)對任意的a∈[3,5],x1,x2∈[1,3](x1≠x2),恒有|f(x1)-f(x2)|<λ,求實數(shù)λ的取值范圍.
[解] (1)由題意知,函數(shù)f(x)的定義域為{x|x>0},對f(x)求導,得f′(x)=x-(a+1)+=(x>0).
當a≤0時,函數(shù)f(x)的單調遞增區(qū)間為(1,+∞),單調遞減區(qū)間為(0,1);
當0<a<1時,函數(shù)f(x)的單調遞增區(qū)間為(0,a),(1,+∞),單調遞減區(qū)間為(a,1);
當a>1時,函數(shù)f(x)的單調遞增區(qū)間為(0,1),(a,+∞),單調遞減區(qū)間為(1,a);
當a=1時,函數(shù)f(x)的單調遞增區(qū)間為(0,+∞),
11、沒有單調遞減區(qū)間.
(2)不妨設1≤x1<x2≤3,則->0.
又3≤a≤5,由(1)知,函數(shù)f(x)在[1,3]上單調遞減,則f(x1)-f(x2)>0.
所以f(x1)-f(x2)<-,即f(x1)-<f(x2)-.
令g(x)=f(x)-(1≤x≤3),可知函數(shù)g(x)在[1,3]上單調遞增,則g′(x)=f′(x)+≥0,
即λ≥-x3+(a+1)x2-ax=(x2-x)a-x3+x2對任意的a∈[3,5],x∈[1,3]成立.記h(a)=(x2-x)a-x3+x2,則x∈[1,3]時,h′(a)=x2-x≥0,函數(shù)h(a)在[3,5]上單調遞增,
所以h(a)≤h(5)=
12、-x3+6x2-5x.
記φ(x)=-x3+6x2-5x,則φ′(x)=-3x2+12x-5,
注意到φ′(1)=4>0,φ′(3)=4>0,由二次函數(shù)性質知在x∈[1,3]時,φ′(x)>0,
即函數(shù)φ(x)在[1,3]上單調遞增,
所以φ(x)≤φ(3)=12,
故λ的取值范圍為[12,+∞).
4.(2020·鄲城模擬)已知函數(shù)f(x)=xln x-x+1,g(x)=ex-ax,a∈R.
(1)求f(x)的最小值;
(2)若g(x)≥1在R上恒成立,求a的值;
(3)求證:ln+ln+…+ln<1.
[解] (1)函數(shù)f(x)的定義域為(0,+∞).f′(x)=ln
13、x,
∴當0<x<1時,f′(x)<0,x>1時,f′(x)>0,
∴f(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,
∴當x=1時,f(x)取得最小值f(1)=0.
(2)由g(x)=ex-ax≥1恒成立可得ax+1≤ex恒成立,
設h(x)=ex,則h′(x)=ex,故h′(0)=1,h(0)=1,
∴函數(shù)y=h(x)在(0,1)處的切線方程為y=x+1,
∴x+1≤ex恒成立.
∴a=1.
(3)由(2)可知,x+1≤ex恒成立,
兩邊取對數(shù)得ln(x+1)≤x,令x=(i=1,2,3…n)累加得ln+ln+…+ln ≤++…+==1-<1.
所以原不等式成立.