影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專題訓(xùn)練 第一部分 知識(shí)方法篇 專題7 解析幾何 第31練 直線與圓錐曲線的綜合問(wèn)題 文-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號(hào):241356829 上傳時(shí)間:2024-06-20 格式:DOC 頁(yè)數(shù):12 大?。?35.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專題訓(xùn)練 第一部分 知識(shí)方法篇 專題7 解析幾何 第31練 直線與圓錐曲線的綜合問(wèn)題 文-人教版高三數(shù)學(xué)試題_第1頁(yè)
第1頁(yè) / 共12頁(yè)
高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專題訓(xùn)練 第一部分 知識(shí)方法篇 專題7 解析幾何 第31練 直線與圓錐曲線的綜合問(wèn)題 文-人教版高三數(shù)學(xué)試題_第2頁(yè)
第2頁(yè) / 共12頁(yè)
高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專題訓(xùn)練 第一部分 知識(shí)方法篇 專題7 解析幾何 第31練 直線與圓錐曲線的綜合問(wèn)題 文-人教版高三數(shù)學(xué)試題_第3頁(yè)
第3頁(yè) / 共12頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專題訓(xùn)練 第一部分 知識(shí)方法篇 專題7 解析幾何 第31練 直線與圓錐曲線的綜合問(wèn)題 文-人教版高三數(shù)學(xué)試題》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 考前3個(gè)月知識(shí)方法專題訓(xùn)練 第一部分 知識(shí)方法篇 專題7 解析幾何 第31練 直線與圓錐曲線的綜合問(wèn)題 文-人教版高三數(shù)學(xué)試題(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第31練 直線與圓錐曲線的綜合問(wèn)題 [題型分析·高考展望] 本部分重點(diǎn)考查直線和圓錐曲線的綜合性問(wèn)題,從近幾年的高考試題來(lái)看,除了在解答題中必然有直線與圓錐曲線的聯(lián)立外,在選擇題或填空題中出現(xiàn)的圓錐曲線問(wèn)題也經(jīng)常與直線結(jié)合起來(lái).本部分的主要特點(diǎn)是運(yùn)算量大、思維難度較高,但有時(shí)靈活地借助幾何性質(zhì)來(lái)分析問(wèn)題可能會(huì)收到事半功倍的效果.預(yù)測(cè)在今后高考中,主要圍繞著直線與橢圓的位置關(guān)系進(jìn)行命題,有時(shí)會(huì)與向量的共線、模和數(shù)量積等聯(lián)系起來(lái);對(duì)于方程的求解,不要忽視軌跡的求解形式,后面的設(shè)問(wèn)將是對(duì)最值、定值、定點(diǎn)、參數(shù)范圍的考查,探索類和存在性問(wèn)題考查的概率也很高. 體驗(yàn)高考 1.(2015·江蘇)如圖

2、,在平面直角坐標(biāo)系xOy中,已知橢圓+=1(a>b>0)的離心率為,且右焦點(diǎn)F到左準(zhǔn)線l的距離為3. (1)求橢圓的標(biāo)準(zhǔn)方程; (2)過(guò)F的直線與橢圓交于A,B兩點(diǎn),線段AB的垂直平分線分別交直線l和AB于點(diǎn)P,C,若|PC|=2|AB|,求直線AB的方程. 解 (1)由題意,得=且c+=3, 解得a=,c=1,則b=1, 所以橢圓的標(biāo)準(zhǔn)方程為+y2=1. (2)當(dāng)AB⊥x軸時(shí),AB=,又CP=3,不合題意. 當(dāng)AB與x軸不垂直時(shí),設(shè)直線AB的方程為 y=k(x-1),A(x1,y1),B(x2,y2), 將AB的方程代入橢圓方程, 得(1+2k2)x2-4k2x+2(k2

3、-1)=0, 則x1,2=, C的坐標(biāo)為,且 AB== =. 若k=0,則線段AB的垂直平分線為y軸,與左準(zhǔn)線平行,不合題意. 從而k≠0,故直線PC的方程為 y+=-, 則P點(diǎn)的坐標(biāo)為, 從而PC=.因?yàn)閨PC|=2|AB|, 所以=,解得k=±1. 此時(shí)直線AB的方程為y=x-1或y=-x+1. 2.(2016·浙江)如圖,設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,拋物線上的點(diǎn)A到y(tǒng)軸的距離等于|AF|-1. (1)求p的值; (2)若直線AF交拋物線于另一點(diǎn)B,過(guò)B與x軸平行的直線和過(guò)F與AB垂直的直線交于點(diǎn)N,AN與x軸交于點(diǎn)M,求M的橫坐標(biāo)的取值范圍.

4、 解 (1)由題意可得,拋物線上點(diǎn)A到焦點(diǎn)F的距離等于點(diǎn)A到直線x=-1的距離,由拋物線的定義得=1, 即p=2. (2)由(1)得,拋物線方程為y2=4x,F(xiàn)(1,0), 可設(shè)A(t2,2t),t≠0,t≠±1. 因?yàn)锳F不垂直于y軸, 可設(shè)直線AF:x=sy+1(s≠0),由消去x得y2-4sy-4=0. 故y1y2=-4,所以B. 又直線AB的斜率為, 故直線FN的斜率為-, 從而得直線FN:y=-(x-1), 直線BN:y=-. 所以N. 設(shè)M(m,0),由A,M,N三點(diǎn)共線得=, 于是m=,所以m<0或m>2. 經(jīng)檢驗(yàn),m<0或m>2滿足題意. 綜上,

5、點(diǎn)M的橫坐標(biāo)的取值范圍是(-∞,0)∪(2,+∞). 3.(2016·四川)已知橢圓E:+=1(a>b>0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)P在橢圓E上. (1)求橢圓E的方程; (2)設(shè)不過(guò)原點(diǎn)O且斜率為的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|. (1)解 由已知,得a=2b, 又橢圓+=1(a>b>0)過(guò)點(diǎn)P,故+=1,解得b2=1.所以橢圓E的方程是+y2=1. (2)證明 設(shè)直線l的方程為y=x+m(m≠0),A(x1,y1),B(x2,y2). 由方程組得x2+2

6、mx+2m2-2=0,① 方程①的判別式為Δ=4m2-4(2m2-2),由Δ>0, 即2-m2>0,解得-

7、x軸上的橢圓M的方程為+=1(b>0),其離心率為. (1)求橢圓M的方程; (2)若直線l過(guò)點(diǎn)P(0,4),則直線l何時(shí)與橢圓M相交? 解 (1)因?yàn)闄E圓M的離心率為, 所以=2,得b2=2. 所以橢圓M的方程為+=1. (2)①過(guò)點(diǎn)P(0,4)的直線l垂直于x軸時(shí),直線l與橢圓M相交. ②過(guò)點(diǎn)P(0,4)的直線l與x軸不垂直時(shí),可設(shè)直線l的方程為y=kx+4.由消去y, 得(1+2k2)x2+16kx+28=0. 因?yàn)橹本€l與橢圓M相交, 所以Δ=(16k)2-4(1+2k2)×28=16(2k2-7)>0, 解得k<-或k>. 綜上,當(dāng)直線l垂直于x軸或直線l的斜

8、率的取值范圍為∪時(shí), 直線l與橢圓M相交. 點(diǎn)評(píng) 對(duì)于求過(guò)定點(diǎn)的直線與圓錐曲線的位置關(guān)系問(wèn)題,一是利用方程的根的判別式來(lái)確定,但一定要注意,利用判別式的前提是二次項(xiàng)系數(shù)不為零;二是利用圖形來(lái)處理和理解;三是直線過(guò)定點(diǎn)位置不同,導(dǎo)致直線與圓錐曲線的位置關(guān)系也不同. 變式訓(xùn)練1 (2015·安徽)設(shè)橢圓E的方程為+=1(a>b>0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為. (1)求橢圓E的離心率e; (2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)的縱坐標(biāo)為,求E的方程.

9、 解 (1)由題設(shè)條件知,點(diǎn)M的坐標(biāo)為, 又kOM=,從而=, 進(jìn)而得a=b,c==2b,故e==. (2)由題設(shè)條件和(1)的計(jì)算結(jié)果可得,直線AB的方程為+=1,點(diǎn)N的坐標(biāo)為. 設(shè)點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)S的坐標(biāo)為, 則線段NS的中點(diǎn)T的坐標(biāo)為. 又點(diǎn)T在直線AB上,且kNS·kAB=-1, 從而有解得b=3. 所以a=3,故橢圓E的方程為+=1. 題型二 直線與圓錐曲線的弦的問(wèn)題 例2 已知橢圓+=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0)(c>0),過(guò)點(diǎn)E(,0)的直線與橢圓相交于A,B兩點(diǎn),且F1A∥F2B,|F1A|=2|F2B|. (

10、1)求橢圓的離心率; (2)求直線AB的斜率. 解 (1)由F1A∥F2B,且|F1A|=2|F2B|, 得==, 從而=, 整理,得a2=3c2,故離心率e=. (2)由(1)得b2=a2-c2=2c2, 所以橢圓的方程可寫(xiě)為2x2+3y2=6c2, 設(shè)直線AB的方程為y=k(x-),即y=k(x-3c). 由已知設(shè)A(x1,y1),B(x2,y2), 則它們的坐標(biāo)滿足方程組消去y并整理,得(2+3k2)x2-18k2cx+27k2c2-6c2=0, 依題意,Δ=48c2(1-3k2)>0, 得-

11、為線段AE的中點(diǎn), 所以x1+3c=2x2,③ 聯(lián)立①③解得x1=,x2=, 將x1,x2代入②中,解得k=±滿足(*)式, 故所求k的值是±. 點(diǎn)評(píng) 直線與圓錐曲線弦的問(wèn)題包括求弦的方程,弦長(zhǎng),弦的位置確定,弦中點(diǎn)坐標(biāo)軌跡等問(wèn)題,解決這些問(wèn)題的總體思路是設(shè)相關(guān)量,找等量關(guān)系,利用幾何性質(zhì)列方程(組),不等式(組)或利用一元二次方程根與系數(shù)的關(guān)系,使問(wèn)題解決. 變式訓(xùn)練2 設(shè)F1,F(xiàn)2分別是橢圓E:+=1(a>b>0)的左,右焦點(diǎn),過(guò)F1且斜率為1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列. (1)求橢圓E的離心率; (2)設(shè)點(diǎn)P(0,-1)滿足

12、|PA|=|PB|,求橢圓E的方程. 解 (1)由橢圓定義知|AF2|+|BF2|+|AB|=4a, 又2|AB|=|AF2|+|BF2|,得|AB|=a, l的方程為y=x+c,其中c=. 設(shè)A(x1,y1),B(x2,y2),則A,B兩點(diǎn)的坐標(biāo)滿足方程組消去y,化簡(jiǎn)得(a2+b2)x2+2a2cx+a2(c2-b2)=0,則x1+x2=,x1x2=. 因?yàn)橹本€AB的斜率為1,所以|AB|=|x2-x1|=,即a=,故a2=2b2, 所以E的離心率e===. (2)設(shè)AB的中點(diǎn)為N(x0,y0),由(1)知 x0===-,y0=x0+c=. 由|PA|=|PB|,得kPN=

13、-1,即=-1, 得c=3,從而a=3,b=3. 故橢圓E的方程為+=1. 高考題型精練 1.(2015·北京)已知橢圓C:x2+3y2=3,過(guò)點(diǎn)D(1,0)且不過(guò)點(diǎn)E(2,1)的直線與橢圓C交于A,B兩點(diǎn),直線AE與直線x=3交于點(diǎn)M. (1)求橢圓C的離心率; (2)若AB垂直于x軸,求直線BM的斜率; (3)試判斷直線BM與直線DE的位置關(guān)系,并說(shuō)明理由. 解 (1)橢圓C的標(biāo)準(zhǔn)方程為+y2=1, 所以a=,b=1,c=. 所以橢圓C的離心率e==. (2)因?yàn)锳B過(guò)點(diǎn)D(1,0)且垂直于x軸, 所以可設(shè)A(1,y1),B(1,-y1), 直線AE的方程為y-1

14、=(1-y1)(x-2), 令x=3,得M(3,2-y1), 所以直線BM的斜率kBM==1. (3)直線BM與直線DE平行,證明如下: 當(dāng)直線AB的斜率不存在時(shí), 由(2)可知kBM=1. 又因?yàn)橹本€DE的斜率kDE==1, 所以BM∥DE, 當(dāng)直線AB的斜率存在時(shí), 設(shè)其方程為y=k(x-1)(k≠1), 設(shè)A(x1,y1),B(x2,y2), 則直線AE的方程為y-1=(x-2). 令x=3,得點(diǎn)M, 由得(1+3k2)x2-6k2x+3k2-3=0, 所以x1+x2=,x1x2=, 直線BM的斜率kBM=, 因?yàn)閗BM-1 = = ==0, 所以

15、kBM=1=kDE. 所以BM∥DE, 綜上可知,直線BM與直線DE平行. 2.(2016·課標(biāo)全國(guó)甲)已知A是橢圓E:+=1的左頂點(diǎn),斜率為k(k>0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA. (1)當(dāng)|AM|=|AN|時(shí),求△AMN的面積; (2)當(dāng)2|AM|=|AN|時(shí),證明:0,由|AM|=|AN|及橢圓的對(duì)稱性知,直線AM的傾斜角為. 又A(-2,0),因此直線AM的方程為y=x+2. 將x=y(tǒng)-2代入+=1得7y2-12y=0, 解得y=0或y=,所以y1=. 因此△AMN的面積S△AMN=2××

16、×=. (2)證明 將直線AM的方程y=k(x+2)(k>0)代入+=1得(3+4k2)x2+16k2x+16k2-12=0, 由x1·(-2)=得x1=, 故|AM|=|x1+2|=. 由題設(shè),直線AN的方程為y=-(x+2), 故同理可得|AN|=. 由2|AM|=|AN|,得=, 即4k3-6k2+3k-8=0, 設(shè)f(t)=4t3-6t2+3t-8,則k是f(t)的零點(diǎn), f′(t)=12t2-12t+3=3(2t-1)2≥0, 所以f(t)在(0,+∞)單調(diào)遞增, 又f()=15-26<0,f(2)=6>0, 因此f(t)在(0,+∞)有唯一的零點(diǎn), 且零點(diǎn)

17、k在(,2)內(nèi), 所以0)到直線l:x-y-2=0的距離為.設(shè)P為直線l上的點(diǎn),過(guò)點(diǎn)P作拋物線C的兩條切線PA,PB,其中A,B為切點(diǎn). (1)求拋物線C的方程; (2)當(dāng)點(diǎn)P(x0,y0)為直線l上的定點(diǎn)時(shí),求直線AB的方程; (3)當(dāng)點(diǎn)P在直線l上移動(dòng)時(shí),求|AF|·|BF|的最小值. 解 (1)依題意知=,c>0,解得c=1. 所以拋物線C的方程為x2=4y. (2)由y=x2得y′=x, 設(shè)A(x1,y1),B(x2,y2),則切線PA,PB的斜率分別為x1,x2,所以切線PA的方程為y-y1=(x-x

18、1),即y=x-+y1,即x1x-2y-2y1=0. 同理可得切線PB的方程為x2x-2y-2y2=0, 又點(diǎn)P(x0,y0)在切線PA和PB上, 所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0, 所以(x1,y1),(x2,y2)為方程x0x-2y0-2y=0 的兩組解,所以直線AB的方程為x0x-2y-2y0=0. (3)由拋物線定義知|AF|=y(tǒng)1+1,|BF|=y(tǒng)2+1, 所以|AF|·|BF|=(y1+1)(y2+1)=y(tǒng)1y2+(y1+y2)+1, 聯(lián)立方程 消去x整理得y2+(2y0-x)y+y=0, 所以y1+y2=x-2y0,y1y2=y(tǒng),

19、 所以|AF|·|BF|=y(tǒng)1y2+(y1+y2)+1 =y(tǒng)+x-2y0+1 =y(tǒng)+(y0+2)2-2y0+1=2y+2y0+5 =22+, 所以當(dāng)y0=-時(shí), |AF|·|BF|取得最小值,且最小值為. 4.已知橢圓C1:+=1(a>b>0)的右頂點(diǎn)為A(1,0),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1. (1)求橢圓C1的方程; (2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(h∈R)上,C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),求h的最小值. 解 (1)由題意,得從而 因此,橢圓C1的方程為+x2=1. (2)如圖,設(shè)M(x1,y1),N(

20、x2,y2),P(t,t2+h), 則拋物線C2在點(diǎn)P處的切線斜率為y′. 直線MN的方程為y=2tx-t2+h. 將上式代入橢圓C1的方程中,得4x2+(2tx-t2+h)2-4=0,即4(1+t2)x2-4t(t2-h(huán))x+(t2-h(huán))2-4=0. ① 因?yàn)橹本€MN與橢圓C1有兩個(gè)不同的交點(diǎn), 所以①式中的Δ1=16[-t4+2(h+2)t2-h(huán)2+4]>0. ② 設(shè)線段MN的中點(diǎn)的橫坐標(biāo)是x3, 則x3==. 設(shè)線段PA的中點(diǎn)的橫坐標(biāo)是x4,則x4=. 由題意,得x3=x4, 即t2+(1+h)t+1=0. ③ 由③式中的Δ2=(1+h)2-4≥0,得h≥1,或h≤-3. 當(dāng)h≤-3時(shí),h+2<0,4-h(huán)2<0, 則不等式②不成立,所以h≥1. 當(dāng)h=1時(shí),代入方程③得t=-1, 將h=1,t=-1代入不等式②,檢驗(yàn)成立. 所以,h的最小值為1.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!