影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

《定積分的概念》(第2課時)課件

上傳人:gbs****77 文檔編號:31501564 上傳時間:2021-10-12 格式:PPT 頁數(shù):31 大?。?77KB
收藏 版權申訴 舉報 下載
《定積分的概念》(第2課時)課件_第1頁
第1頁 / 共31頁
《定積分的概念》(第2課時)課件_第2頁
第2頁 / 共31頁
《定積分的概念》(第2課時)課件_第3頁
第3頁 / 共31頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《定積分的概念》(第2課時)課件》由會員分享,可在線閱讀,更多相關《《定積分的概念》(第2課時)課件(31頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、1.5.3 1.5.3 定積分的概念定積分的概念觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當

2、分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積

3、的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系觀察下列演示過程,注意當分割加細時,觀察下列演示過程,注意當分割加細時,矩形面積和與曲邊梯形面積的關系矩形面積和與曲邊梯形面積的關系求由連續(xù)曲線求由連續(xù)曲線y= =f(

4、x)對應的對應的曲邊梯形曲邊梯形面積的方法面積的方法 (2)取近似求和取近似求和:任取任取x xi xi- -1, xi,第,第i個小曲邊梯形的面積用個小曲邊梯形的面積用高為高為f(x xi)而寬為而寬為D Dx的小矩形面積的小矩形面積f(x xi)D Dx近似之。近似之。 (3)取極限取極限:,所求曲邊所求曲邊梯形的梯形的面積面積S為為 取取n個小矩形面積的和作為曲邊梯個小矩形面積的和作為曲邊梯形面積形面積S的近似值:的近似值:xiy=f(x)x yObaxi+1xixD1lim( )niniSfxx=D1( )niiSfxx=D (1)分割分割:在區(qū)間在區(qū)間0,1上等間隔地插入上等間隔地插

5、入n-1個點個點,將它等分成將它等分成n個小區(qū)間個小區(qū)間: 每個小區(qū)間寬度每個小區(qū)間寬度xban-= 11211,iina xx xxxxb-一、定積分的定義一、定積分的定義 11( )( )nniiiibafxfnxx=-D =小矩形面積和S=如果當n時,S 的無限接近某個常數(shù),這個常數(shù)為函數(shù)f(x)在區(qū)間a, b上的定積分,記作 ba (x)dx,即f (x)dx =f (x i)Dxi。 從求曲邊梯形面積從求曲邊梯形面積S的過程中可以看出的過程中可以看出,通過通過“四步四步曲曲”:分割分割-近似代替近似代替-求和求和-取極限得到解決取極限得到解決.1( )lim( )ninibaf x

6、dxfnx=-=ba即定積分的定義:定積分的相關名稱:定積分的相關名稱: 叫做積分號,叫做積分號, f(x) 叫做被積函數(shù),叫做被積函數(shù), f(x)dx 叫做被積表達式,叫做被積表達式, x 叫做積分變量,叫做積分變量, a 叫做積分下限,叫做積分下限, b 叫做積分上限,叫做積分上限, a, b 叫做積分區(qū)間。叫做積分區(qū)間。1( )lim( )ninibaf x dxfnx=-=ba即Oabxy)(xfy = = = =baIdxxf)(iinixfD D = =)(lim10 x x 被積函數(shù)被積函數(shù)被積表達式被積表達式積分變量積分變量積分下限積分下限積分上限積分上限 S=baf (x)d

7、x; 按定積分的定義,有 (1) 由連續(xù)曲線y=f(x) (f(x)0) ,直線x=a、x=b及x軸所圍成的曲邊梯形的面積為 (2) 設物體運動的速度v=v(t),則此物體在時間區(qū)間a, b內(nèi)運動的距離s為 s=bav(t)dt。 定積分的定義:Oab( )vv t=tv1( )lim( )ninibaf x dxfnx=-=ba即112001( )3Sf x dxx dx=根據(jù)定積分的定義右邊圖形的面積為1x yOf(x)=x213S =1SD2SD2( )2v tt= -+O Ov t t12gggggg3SDjSDnSD1n2n3njn1nn-4SD112005( )(2)3Sv t d

8、ttdt=-=根據(jù)定積分的定義左邊圖形的面積為baf(x)dx =f (t)dt =f(u)du。 說明:說明: (1) 定積分是一個數(shù)值定積分是一個數(shù)值, 它只與被積函數(shù)及積分區(qū)間有關,它只與被積函數(shù)及積分區(qū)間有關, 而與積分變量的記法無關,即而與積分變量的記法無關,即(2)定定義義中中區(qū)區(qū)間間的的分分法法和和x xi的的取取法法是是任任意意的的. b ba af f( (x x) )dxdx = = b ba af f ( (x x) )dxdx - -(3)(3)(2)定積分的幾何意義:Ox yab y=f (x)baf (x)dx =f (x)dxf (x)dx。 x=a、x=b與 x

9、軸所圍成的曲邊梯形的面積。 當 f(x)0 時,積分dxxfba)(在幾何上表示由 y=f (x)、 特別地,當 a=b 時,有baf (x)dx=0。 當f(x)0時,由y=f (x)、x=a、x=b 與 x 軸所圍成的曲邊梯形位于 x 軸的下方,x yOdxxfSba)(-=-,dxxfba)(ab y=f (x) y=-f (x)dxxfSba)(-=baf (x)dx =f (x)dxf (x)dx。 =-S上述曲邊梯形面積的負值。 定積分的幾何意義:積分baf (x)dx 在幾何上表示 baf (x)dx =f (x)dxf (x)dx。 =-Sab y=f (x)Ox y( )yg

10、 x=探究探究:根據(jù)定積分的幾何意義根據(jù)定積分的幾何意義,如何用定積分表示圖中陰影部分的如何用定積分表示圖中陰影部分的面積面積?ab y=f (x)Ox y1()baSfx dx=( )yg x=12( )( )bbaaS S Sf xdxg xdx= -=-2( )baSg x dx=三三: : 定積分的基本性質定積分的基本性質 性質性質1. 1. dx)x(g)x(fba = =babadx)x(gdx)x(f性質性質2. 2. badx)x(kf = =badx)x(fk三三: : 定積分的基本性質定積分的基本性質 定積分關于積分區(qū)間具有定積分關于積分區(qū)間具有可加性可加性 = =bcca

11、badx)x(fdx)x(fdx)x(f 性質性質3. 3. = =2121 ccbccabadx)x(fdx)x(fdx)x(fdx)x(fOx yab y=f (x)性質性質 3 不論不論a,b,c的相對位置如何都有的相對位置如何都有ab y=f(x)baf (x)dx =f (x)dxf (x)dx。 f (x)dx =f (x)dxf (x)dx。 f (x)dx =f (x)dxbcf (x)dx。 cOx ybaf (x)dx =f (x)dxf (x)dx。 例例1:利用定積分的定義:利用定積分的定義,計算計算 的值的值. 130 x d x 作業(yè):作業(yè):組()組組()組 練習:練習:-組,組,組,組,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!