影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

廣義似然比檢驗(yàn)法的具體方法數(shù)學(xué)畢業(yè)論文

上傳人:1888****888 文檔編號(hào):36053006 上傳時(shí)間:2021-10-29 格式:DOC 頁(yè)數(shù):26 大?。?.25MB
收藏 版權(quán)申訴 舉報(bào) 下載
廣義似然比檢驗(yàn)法的具體方法數(shù)學(xué)畢業(yè)論文_第1頁(yè)
第1頁(yè) / 共26頁(yè)
廣義似然比檢驗(yàn)法的具體方法數(shù)學(xué)畢業(yè)論文_第2頁(yè)
第2頁(yè) / 共26頁(yè)
廣義似然比檢驗(yàn)法的具體方法數(shù)學(xué)畢業(yè)論文_第3頁(yè)
第3頁(yè) / 共26頁(yè)

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《廣義似然比檢驗(yàn)法的具體方法數(shù)學(xué)畢業(yè)論文》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《廣義似然比檢驗(yàn)法的具體方法數(shù)學(xué)畢業(yè)論文(26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、摘 要 本文所研究的是廣義似然比檢驗(yàn)法的理論基礎(chǔ)、基本原理和應(yīng)用,這是一個(gè)很具有一般性的檢驗(yàn)法,由之可以派生出很多的具體的檢驗(yàn)法. 作為預(yù)備知識(shí)先研究了引理及似然比檢驗(yàn)法,似然比檢驗(yàn)法所求出的否定域具有很好的性質(zhì),但卻有它的局限性,因此我們有必要去尋找更好的方法,廣義似然比檢驗(yàn)法的適用范圍很廣,本文主要是介紹了廣義似然比檢驗(yàn)法的具體方法并利用廣義似然比檢驗(yàn)法推導(dǎo)出單個(gè)正態(tài)總體和兩個(gè)正態(tài)總體的各種情況下的否定域,我詳細(xì)推導(dǎo)了單個(gè)正態(tài)總體下對(duì)均值和方差的單邊和雙邊檢驗(yàn),而對(duì)兩個(gè)正態(tài)總體的情況只給出了結(jié)論. 關(guān)鍵詞:引理;似然比檢驗(yàn)法;廣義似然比檢驗(yàn)法;正態(tài)分布 Abstract T

2、his article studies is the generalized likelihood ratio inspection method rationale, the basic principle and the application, this is one has the general inspection method very much, might derive very many concrete inspection methods by it. To study the lemma and the likelihood ratio inspection

3、 method first as the preparation knowledge, otherwise the localization which the likelihood ratio inspection method extracted has the very good nature, but had its limitation actually, therefore we had the necessity to seek a better method, the generalized likelihood ratio inspection method applicab

4、le scope was very broad, this article mainly introduced the generalized likelihood ratio inspection method concrete method and used the generalized likelihood ratio inspection method to infer the single normal population and in two normal population each kind of situation. Otherwise the localization

5、, I have inferred under in detail the single normal population to the average value and the variance unilateral and the bilateral examination, but has only given the conclusion. Key words: Lemma;Likelihood ratio inspection method;Generalized likelihood ratio inspection method;Normal distributio

6、n 前 言 廣義似然比檢驗(yàn)是數(shù)理統(tǒng)計(jì)的重要內(nèi)容之一,也是一大難點(diǎn),它在假設(shè)檢驗(yàn)中的地位類(lèi)似于最大似然估計(jì)在參數(shù)估計(jì)中的地位,本科數(shù)學(xué)類(lèi)專(zhuān)業(yè)數(shù)理統(tǒng)計(jì)教學(xué)大綱對(duì)該內(nèi)容的要求比較低,相應(yīng)的教材只介紹廣義似然比檢驗(yàn)的基本概念和基本方法,其他內(nèi)容甚少.本文就是在原有大綱和教材要求的基礎(chǔ)上展開(kāi)研究,總結(jié)搜集探討了以下內(nèi)容:第一章引理及似然比檢驗(yàn)法,似然比檢驗(yàn)法的最優(yōu)性,似然比檢驗(yàn)法的無(wú)偏性,第二章廣義似然比檢驗(yàn)法的前提和方法,第三章用廣義似然比檢驗(yàn)法重點(diǎn)解決了單個(gè)正態(tài)總體下的方差已知的情況下對(duì)均值的雙邊檢驗(yàn)和單邊檢驗(yàn),方差未知的情況下

7、對(duì)均值的雙邊檢驗(yàn)和單邊檢驗(yàn),均值已知的情況下對(duì)方差的雙邊檢驗(yàn)和單邊檢驗(yàn),均值未知的情況下對(duì)方差的雙邊檢驗(yàn)和單邊檢驗(yàn),簡(jiǎn)單介紹了兩個(gè)正態(tài)總體下的各種情況的檢驗(yàn),最后我用兩個(gè)表格總結(jié)了上述討論中得出的結(jié)果. 目 錄 第1章 引理及似然比檢驗(yàn)法 1 1.1 引理 1 1.2 似然比檢驗(yàn)法 2 第2章 廣義似然比檢驗(yàn)法 6 第3章 廣義似然比檢驗(yàn)法的應(yīng)用 7 3.1 單個(gè)正態(tài)總體的假設(shè)檢驗(yàn) 7 3.2 兩個(gè)正態(tài)總體的假設(shè)檢驗(yàn) 17 3.3表格 19 結(jié) 論 21 致 謝 23 22 第1章 引理及似然比檢驗(yàn)法 1.1 引理 設(shè)是連續(xù)型隨機(jī)變量,密度函數(shù)是 ..

8、檢驗(yàn)問(wèn)題: 設(shè)是的樣本,記 , . 定理1.1 給定設(shè) (這里) 適合 , 則對(duì)任何否定域只要就一定有 . 即是所有檢驗(yàn)水平不超過(guò)的否定域中犯第二類(lèi)錯(cuò)誤的概率最小的一個(gè).證明 設(shè)是任何滿(mǎn)足的否定域,則     = =. 1.2 似然比檢驗(yàn)法 1.2.1 似然比檢驗(yàn)法 根據(jù)引理,否定域具有最優(yōu)性,其中 叫做似然比.這個(gè)否定域確定的檢驗(yàn)法叫做似然比檢驗(yàn)法.當(dāng)似然比的分布函數(shù)連續(xù)時(shí),是存在的. 例1 設(shè)檢驗(yàn)問(wèn)題: 設(shè)是來(lái)自總體的樣本,求該檢驗(yàn)問(wèn)題的否定域

9、. 解 的密度函數(shù)是 , 根據(jù)似然比檢驗(yàn)法只須尋找型的否定域,其中 , 為了必須且只須 ,記, 而當(dāng)正確時(shí) ,則. 故應(yīng)選滿(mǎn)足 查表知 , 故該檢驗(yàn)問(wèn)題的否定域?yàn)? . 1.2.2 似然比檢驗(yàn)法的最優(yōu)性 定理1.2 設(shè)的分布密度是的可能值集合 與無(wú)關(guān).設(shè) 是的樣本,若在下的分布函數(shù)是連續(xù)的,則對(duì)任何,存在使得是水平為的唯一最大功效的否定域.這里“唯一”的含義是:若也是水平為的最大功效的否定域,則(是Lebesgue 測(cè)度,) . 證明 由于的分布函數(shù)連續(xù),故有,使得 于是的水平是.設(shè)是的任一子集,檢驗(yàn)水平不超過(guò),即 ,我們來(lái)證明:若則必有

10、 . (1.1) 實(shí)際上 這里及下面我們恒用代替.分兩種情況討論. (一) 此時(shí)在集合上     則 但在上 故             =. 故(1.1)式成立. (二) 令 因?yàn)榈姆植己瘮?shù)連續(xù),故 即 但 故.從而 . 故(1.1)仍然成

11、立.證明完畢 1.2.3 似然比檢驗(yàn)法的無(wú)偏性 定理 在引理的假定下 證明 記,則        = =. 第2章 廣義似然比檢驗(yàn)法 上面我們研究的是似然比檢驗(yàn)法,我們可以發(fā)現(xiàn)利用似然比檢驗(yàn)法求出的否定域既是一致最大功效的又是無(wú)偏的,但卻有它的局限性,即未知參數(shù)的取值范圍必須是的形式,這是很少見(jiàn)的,那么對(duì)于一般的我們經(jīng)常采用似然比檢驗(yàn)法的推廣廣義似然比檢驗(yàn)法,這是一個(gè)很具有一般性的檢驗(yàn)法

12、,由之可以派生出很多的具體的檢驗(yàn)法 設(shè)樣本分布具有密度函數(shù)(或概率函數(shù))為. 檢驗(yàn)問(wèn)題:   稱(chēng)為樣本值()的廣義似然比. 由定義知,.設(shè)分別表示在及上的最大似然估計(jì),則 原假設(shè)成立,即的真值確定在內(nèi),則也在內(nèi)或離很近,使得 從而.當(dāng)顯著地大于1時(shí),有即離很遠(yuǎn);因與的真值很接近,因而的真值在內(nèi)的可能性極小,即極不可能成立.故應(yīng)該取否定域,其中滿(mǎn)足 第3章 廣義似然比檢驗(yàn)法的應(yīng)用 3.1 單個(gè)正態(tài)總體的假設(shè)檢驗(yàn) 1、 設(shè),已知,求檢驗(yàn)問(wèn)題; 的廣義似然比檢驗(yàn)否定域. 解 正態(tài)

13、分布的最大似然估計(jì),似然函數(shù)為 . 故 廣義似然比 . 下面我們來(lái)求: 否定域 其中滿(mǎn)足 即 從而 (3.1) 故否定域?yàn)? (3.2) 2、設(shè) ,未知,求檢驗(yàn)問(wèn)題: 的廣義似然比檢驗(yàn)否定域. 解 似然函數(shù)為 正態(tài)分布的最大似然估計(jì)為 , 故             其中 ,

14、由于是關(guān)于的嚴(yán)格增函數(shù),故廣義似然比檢驗(yàn)的否定域?yàn)?,其中滿(mǎn)足 當(dāng)成立時(shí),,故               (3.3) 即 . (3.4) 例2 某批礦砂的個(gè)樣本中的鎳含量,經(jīng)測(cè)定為(%) 設(shè)測(cè)定值總體服從正態(tài)分布,問(wèn)在=下能否接受假設(shè),這批礦砂的鎳含量的均值為 解 按題意需檢驗(yàn)     設(shè)測(cè)定值總體服從正態(tài)分布,此處未知,此檢驗(yàn)問(wèn)題的否定域?yàn)?,此?,查表得,又算得 ,,,, 不落在否定域內(nèi),故接受,即認(rèn)為這批礦砂的鎳含量的均值為 3、設(shè),

15、已知,,求檢驗(yàn)問(wèn)題: 的廣義似然比檢驗(yàn)否定域. 解 似然函數(shù)為          =. 時(shí),正態(tài)分布的最大似然估計(jì). 因時(shí),,我們只需考慮的情況: 否定域 其中滿(mǎn)足 即 則    (3.5) 故         (3.6) 同理我們可求得,已知,,檢驗(yàn)問(wèn)題: 的廣義似然比檢驗(yàn)否定域?yàn)? 例3 要求一種元件平均使用壽命不得低于小時(shí),生產(chǎn)者從一批這種元件中隨機(jī)抽取件,測(cè)得其壽命的平均值為小時(shí).已知該種元件壽命服從標(biāo)準(zhǔn)

16、差為小時(shí)的正態(tài)分布.試在顯著性水平=下判定這批元件是否合格?設(shè)總體均值為,未知.即需檢驗(yàn)假設(shè) . 解 在這里,=為已知,因此檢驗(yàn)問(wèn)題的否定域?yàn)? = ,,,,,得<, 落在否定域內(nèi),故應(yīng)拒絕,即認(rèn)為這批元件是不合格的. 4、設(shè),未知,求檢驗(yàn)問(wèn)題:的廣義似然比檢驗(yàn)否定域. 解:似然函數(shù)為 時(shí),正態(tài)分布的最大似然估計(jì)為 ,. 故 因時(shí), 我們只需考慮的情況 其中 且 故     其中滿(mǎn)足 當(dāng)成立時(shí),,故             

17、 (3.7) 從而得到廣義似然比檢驗(yàn)否定域?yàn)? (3.8) 同理我們可求得: 設(shè),未知,求檢驗(yàn)問(wèn)題:的廣義似然比檢驗(yàn)否定域?yàn)? . 例4 下面列出的是某工廠隨機(jī)選取的支部件的裝配時(shí)間(分):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2 10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7.設(shè)裝配時(shí)間的總體服從正態(tài)分布,,均未知.是否可以認(rèn)為裝配時(shí)間的均值顯著地大于(取=)? 解 假

18、設(shè)檢驗(yàn)問(wèn)題為(未知),故否定域?yàn)? =,=,=,=,而=,,,=,因此不落在否定域內(nèi),接受,即認(rèn)為裝配時(shí)間得均值顯著地大于 5、設(shè),已知,求檢驗(yàn)問(wèn)題:的廣義似然比檢驗(yàn)否定域. 解 似然函數(shù)為 時(shí),的最大似然估計(jì) 時(shí),= . 故 設(shè) 則 當(dāng)時(shí),遞增,而當(dāng)時(shí),遞減而當(dāng)為真時(shí) 故     (3.9) 故由 知           (3.10) 其中是個(gè)自由度的分布的密度函數(shù). 6、設(shè),未知.求檢驗(yàn)問(wèn)題: 的廣義似

19、然比檢驗(yàn)否定域. 解 似然函數(shù)為 時(shí),, 時(shí),, . 故 . 設(shè),則,當(dāng)時(shí)遞增,而當(dāng)時(shí),遞減而當(dāng)為真時(shí), 故 (3.11) 其中,滿(mǎn)足 故          .    (3.12) 其中是個(gè)自由度的分布的密度函數(shù). 7、設(shè)~,=已知, 求檢驗(yàn)問(wèn)題:的廣義似然比檢驗(yàn)否定域. 解 似然函數(shù)為 時(shí),的最大似然估計(jì)為 時(shí) 當(dāng)時(shí), 當(dāng)時(shí), . 因,是關(guān)于 = 的增函

20、數(shù),故 且 而當(dāng)為真時(shí), 故               (3.13) 從而 (3.14) 8、設(shè)~,未知. 求檢驗(yàn)問(wèn)題的廣義似然比檢驗(yàn)否定域 解 似然函數(shù)為 當(dāng)時(shí),的最大似然估計(jì)為 當(dāng)時(shí) 當(dāng)時(shí), 當(dāng)時(shí), . 因,是關(guān)于 = 的增函數(shù),故 且

21、 故         .        (3.15) 從而    (3.16) 例5 某種導(dǎo)線(xiàn),要求其電阻的標(biāo)準(zhǔn)差不得超過(guò)(歐姆).今在生產(chǎn)的一批導(dǎo)線(xiàn)中取樣品根,測(cè)得=(歐姆),設(shè)總體為正態(tài)分布,參數(shù)均未知.問(wèn)在水平=下能否認(rèn)為這批導(dǎo)線(xiàn)的標(biāo)準(zhǔn)差顯著地偏大? 解 由題意,需要檢驗(yàn)的假設(shè)為,該檢驗(yàn)問(wèn)題的否定域?yàn)? =,=,=,= 而=,落在否定域內(nèi),故應(yīng)拒絕,即認(rèn)為這批導(dǎo)線(xiàn)的標(biāo)準(zhǔn)顯著偏大. 以上我們討論的只是單個(gè)總體的情況,對(duì)于兩個(gè)總體的情況方法完全一樣,我們只給出結(jié)論,不去詳細(xì)求解. 3.2

22、 兩個(gè)正態(tài)總體的假設(shè)檢驗(yàn) 1、設(shè) 檢驗(yàn)問(wèn)題: 此時(shí)取檢驗(yàn)統(tǒng)計(jì)量 (3.17) 則該檢驗(yàn)問(wèn)題的否定域?yàn)? 其中, 滿(mǎn)足 (3.18) 2、設(shè) 檢驗(yàn)問(wèn)題: 此時(shí)取檢驗(yàn)統(tǒng)計(jì)量 則該檢驗(yàn)問(wèn)題的否定域?yàn)? 其中滿(mǎn)足                (3.19) 3、設(shè) 檢驗(yàn)問(wèn)題: 此時(shí)取檢驗(yàn)統(tǒng)計(jì)量    (3.20) 則該檢驗(yàn)問(wèn)題的否定

23、域?yàn)? 其中 滿(mǎn)足            (3.21) 4、設(shè) 檢驗(yàn)問(wèn)題: 此時(shí)取檢驗(yàn)統(tǒng)計(jì)量 該檢驗(yàn)問(wèn)題的否定域?yàn)? 滿(mǎn)足   (3.22) 3.3表格 表3-1 單個(gè)正態(tài)總體的假設(shè)檢驗(yàn) 零假設(shè) 備擇假設(shè) 檢驗(yàn)統(tǒng)計(jì)量 分布 否定域 的決定 已知 已知 (3.6) (3.5) 已知

24、 已知 (3.2) (3.1) 已知 已知 (3.14) (3.13) 已知 已知 (3.10) (3.9) 未知 未知 (3.8) (3.7) 未知 未知 (3.4) (3.3) 未知 未知 (3.16) (3.15) 未知 未知 (3.11) (3.12) 表3-2 兩個(gè)正態(tài)總體的假設(shè)檢驗(yàn) 零假設(shè) 備擇假設(shè) 檢驗(yàn)統(tǒng)計(jì)量 分布 否定域 的決定

25、 (3.17) (3.18) (3.19) (3.20) (3.21) (3.22) 結(jié) 論 本文主要是研究了廣義似然比檢驗(yàn)法的具體方法并利用廣義似然比檢驗(yàn)法推導(dǎo)出單個(gè)正態(tài)總體和兩個(gè)正態(tài)總體的各種情況下的否定域,詳細(xì)推導(dǎo)了單個(gè)正態(tài)總體下對(duì)均值和方差的單邊和雙邊檢驗(yàn),得到了各檢驗(yàn)問(wèn)題否定域見(jiàn)表3-1,對(duì)于兩個(gè)正態(tài)總體的情形,也給出了結(jié)論見(jiàn)表3-2. 參考文獻(xiàn) [1] 陳家鼎.?dāng)?shù)理統(tǒng)計(jì)學(xué)講義[M].北京:高等教育出版社,1993. [2] 范金城,吳可法.統(tǒng)計(jì)推斷引導(dǎo)[M].北京:科學(xué)出版社,2001.

26、[3] 陳希孺.?dāng)?shù)理統(tǒng)計(jì)引論[M].北京:科學(xué)出版社,1981. [4] 陳希孺.高等數(shù)理統(tǒng)計(jì)學(xué)[M].合肥:中國(guó)科學(xué)技術(shù)大學(xué)出版社,1999. [5] 陳家鼎,劉婉如,汪仁官.概率統(tǒng)計(jì)講義(第二版)[M].北京:人民教育出版社,1982. [6] 陳希孺等,數(shù)理統(tǒng)計(jì)教程[M].上海:上??茖W(xué)技術(shù)出版社,1988. [7] 中山大學(xué)數(shù)學(xué)力學(xué)系.概率論與數(shù)理統(tǒng)計(jì)(第二版)[M].北京:高等教育出版社,1980. [8] 中國(guó)科學(xué)院數(shù)學(xué)研究所概率統(tǒng)計(jì)室.常用數(shù)理統(tǒng)計(jì)表[M].北京:科學(xué)出版社,1974. [9] V.K.Rohatgi,An Introduction to Probability theory and Mathematical Statistics[M].Wiley,1976. [10] R.J.Larsen and M.L.Marx,An Introduction to Mathematical Statistics (2nd edition) [M]. Prentice-Hall,1986. [11] Charles J.Stone.概率統(tǒng)計(jì)(英文版)[M].北京:機(jī)械工業(yè)出版社,2003.

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!