影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

高中數(shù)學 第四講 數(shù)學歸納法證明不等式評估驗收卷 新人教A版選修45

上傳人:仙*** 文檔編號:37929346 上傳時間:2021-11-05 格式:DOC 頁數(shù):8 大?。?4.50KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學 第四講 數(shù)學歸納法證明不等式評估驗收卷 新人教A版選修45_第1頁
第1頁 / 共8頁
高中數(shù)學 第四講 數(shù)學歸納法證明不等式評估驗收卷 新人教A版選修45_第2頁
第2頁 / 共8頁
高中數(shù)學 第四講 數(shù)學歸納法證明不等式評估驗收卷 新人教A版選修45_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 第四講 數(shù)學歸納法證明不等式評估驗收卷 新人教A版選修45》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 第四講 數(shù)學歸納法證明不等式評估驗收卷 新人教A版選修45(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3

2、3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 第四講第四講 數(shù)學歸納法證明不等式數(shù)學歸納法證明不等式 評估驗收卷(四) (時間:120 分鐘 滿分:150 分) 一、選擇題(本大題共 12 小題,每小題 5 分,共 60 分在每小題給出的四個選項中,只有一項是符合題目要求的) 1若命題A(n)(nN*)在nk(kN*)時命題成立,則有nk1 時命題成立現(xiàn)知命題對nn0(n0N*)時命題成立,則有( ) A命題對所有正整數(shù)都成立 B命題對小于n0的正整數(shù)不成立,對大于或等于n

3、0的正整數(shù)都成立 C命題對小于n0的正整數(shù)成立與否不能確定,對大于或等于n0的正整數(shù)都成立 D以上說法都不正確 解析:依題意命題A(n)對大于或等于n0的正整數(shù)都成立 答案:C 2等式 122232n212(5n27n4)( ) An為任何正整數(shù)時都成立 B僅當n1, 2,3 時成立 C當n4 時成立,n5 時不成立 D僅當n4 時不成立 解析:把n1,2,3,4,5 代入驗證可知 B 正確 答案:B 3用數(shù)學歸納法證明不等式 11231331n321n(n2,nN)時,第一步應驗證不等式( ) A1123212 B1123133213 C1123213 D1123133214 解析:因為n2

4、, 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F

5、3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 所以第一步驗證不等式應為n2 時 1123212. 答案:A 4設(shè)f(n)1121313n1(nN),則f(n1)f(n)等于( ) A.13n2 B.13n13n1 C.13n113n2 D.13n13n113n2 解析:因為f(n)1121313n1,所以f(n1)1121313n113n13n113n2,所以f(n1)f(n)13n13n113n2. 答案:D 5已知f(n)1n1n11n21n2,則( ) Af(n)

6、中共有n項,當n2 時,f(2)1213 Bf(n)中共有n1 項,當n2 時,f(2)121314 Cf(n)中共有n2n項,當n2 時,f(2)1213 Df(n)中共有n2n1 項,當n2 時,f(2)121314 解析:本題主要考查數(shù)列的概念 由n到n2一共有整數(shù)n2n1 個,所以f(n)有n2n1 項, 當n2 時代入得, f(2)121314. 故本題正確答案為 D. 答案:D 6用數(shù)學歸納法證明“當n為正奇數(shù)時,xnyn能被xy整除”的第二步是( ) A假設(shè)n2k1 時正確,再推n2k3 時正確(kN) B假設(shè)n2k1 時正確,再推n2k1 時正確(kN) C假設(shè)nk時正確,再推

7、nk1 時正確(kN) D假設(shè)nk(k1)時正確,再推nk2 時正確(kN) 解析:n為正奇數(shù),根據(jù)數(shù)學歸納法證題的步驟,第二步應先假設(shè)n取第k個正奇數(shù)也6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D

8、 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 成立,本題即假設(shè)n2k1 時正確,再推n取第(k1)個正奇數(shù),即n2k1 時正確 答案:B 7平面內(nèi)原有k條直線,它們的交點個數(shù)記為f(k),則增加一條直線l后,它們的交點個數(shù)最多為( ) Af(k)1 Bf(k)k Cf(k)k1 Dkf(k) 解析:第k1 條直線與前k條直

9、線都相交有交點,所以應比原先增加k個交點故應選 B. 答案:B 8在數(shù)列an中,a1 21,前n項和Snn11,先算出數(shù)列的前 4 項的值,根據(jù)這些值歸納猜想數(shù)列的通項公式是( ) Aann11 Bann n11 Can 2nn Dann1n 解析:由題意,可知S2a1a2 31, 所以a2 31 21 3 2; S3a1a2a3 41, 所以a3S3S2 4 3, 同理,可得a4S4S3 5 4,故可猜想ann1n. 答案:D 9F(n)是一個關(guān)于自然數(shù)n的命題,若F(k)(kN*)真,則F(k1)真,現(xiàn)已知F(7)不真,則有 F(8)不真 F(8)真 F(6)不真 F(6)真 F(5)不真

10、 F(5)真 其中正確的是( ) A B C D 解析:因為F(k)(kN*)真,則F(k1)真的逆否命題是:F(k1)不真,則F(k)不真,從而可結(jié)合數(shù)學歸納法的原理知:當F(7)不真時,F(xiàn)(6)不真,F(xiàn)(5)亦不真,故是正確的 答案:A 10設(shè) 02,已知a12cos ,an1 2an,則猜想an為( ) A2cos 2n B2cos 2n1 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7

11、 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 C2cos 2n1 D2sin 2n 解析:a12cos ,a2 22cos 2c

12、os 2,a322cos 22cos 4, 猜想an2cos 2n1. 答案:B 11已知 123332433n3n13n(nab)c對一切nN*都成立,則a,b,c的值為( ) Aa12,bc14 Babc14 Ca0,bc14 D不存在這樣的a,b,c 解析:因為等式對一切nN*均成立, 所以n1,2,3 時等式成立, 即13(ab)c,12332(2ab)c,12333233(3ab)c, 整理得3a3bc1,18a9bc7,81a27bc34,解得a12,b14,c14. 答案:A 12已知f(n)(2n7)3n9,存在自然數(shù)m,使得對任意n N,都能使m整除f(n),則最大的m的值為

13、( ) A30 B26 C36 D6 解析:f(1)36,f(2)108,n3 時f(n)9(2n7)3n21,(2n7)3n21,當n3 時能被 4 整除,結(jié)合選項知 C 正確 答案:C 二、填空題(本大題共 4 小題,每小題 5 分,共 20 分把答案填在題中的橫線上) 13 若 用 數(shù) 學 歸 納 法 證 明 : 2n 1n2n 2 成 立 時 , 第 一 步 應 驗 證_ 答案:n03,243232 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D

14、D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 14用數(shù)學歸納法證明

15、命題:12223242(1)n1n2(1)n1n(n1)2(nN),(從“第k步到k1 步”時,兩邊應同時加上_ 答案:(1)k(k1)2 15用數(shù)學歸納法證明“當n是非負整數(shù)時,55n145n235n能被 11 整除”的第一步應寫成:當n_時,55n145n235n_,能被 11 整除 解析:本題考查對運用數(shù)學歸納法證明整除問題的掌握情況,由于n是非負整數(shù),所以第一步應考慮n0. 答案:0 514230 22 16 已知數(shù)列an, 其中a26, 且滿足an1an1an1an1n, 則a1_,a3_,a4_,猜想an_ 解析:由已知可得a2a11a2a111, a3a21a3a212,a4a3

16、1a4a313, 將a26 代入以上三式,解得:a11,a315,a428. 由于a11,a223,a335,a447, 猜想得ann(2n1) 答案:1 15 28 n(2n1) 三、解答題(本大題共 6 小題,共 70 分解答時應寫出必要的文字說明、證明過程或演算步驟) 17(本小題滿分 10 分)用數(shù)學歸納法證明:12414616812n(2n2)n4(n1)(nN*) 證明:(1)當n1 時, 左邊121(22)18,右邊14(11)18, 左邊右邊 所以當n1 時,等式成立 (2)假設(shè)nk(kN*)時等式成立,即有 12414616812k(2k2)k4(k1), 則當nk1 時,

17、12414616812k(2k2)12(k1)2(k1)2k4(k1)6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C

18、 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 14(k1)(k2)k(k2)14(k1)(k2) (k1)24(k1)(k2)k14(k2)k14(k11). 所以當nk1 時,等式也成立 由(1)(2)可知,對于一切nN*等式都成立 18(本小題滿分 12 分)用數(shù)學歸納法證明:f(n)352n123n1(nN*)能被 17 整除 證明:(1)當n1 時,f(1)353243911723, 故f(1)能

19、被 17 整除 (2)假設(shè)nk時,命題成立 即f(k)352k123k1能被 17 整除,則當nk1 時,f(k1)352k323k452352k15223k15223k123k425f(k)1723k1. 由歸納假設(shè),可知f(k)能被 17 整除,又 1723k1顯然可被 17 整除, 故f(k1)能被 17 整除 綜合(1)(2)可知,對任意正整數(shù)n,f(n)能被 17 整除 19(本小題滿分 12 分)求證:平面上通過同一點的n條直線分平面為 2n個部分 證明:(1)當n1 時,一條直線把平面分成兩部分,故命題成立 (2)假設(shè)nk(k1,kN*)時,平面上通過同一點的k條直線把平面分成

20、2k個部分,設(shè)第(k1)條直線落在相鄰的兩條直線之間, 它把這兩條直線所圍成的平面上的兩個區(qū)域變成 4 個區(qū)域,也即增加一條直線后,平面上的區(qū)域共有 2k22(k1)個,故命題對于nk1 也成立 由(1),(2)知,原命題對于任何正整數(shù)n都成立 20(本小題滿分 12 分)設(shè)xn是由x12,xn1xn21xn(nN)定義的數(shù)列,求證:xn 21n. 證明:(1)當n1 時,x12 21,不等式成立 (2)假設(shè)當nk(k1)時,不等式成立, 即xk 21k,那么,當nk1 時,xk1xk21xk. 由歸納假設(shè),xk 21k,則xk22212k,1xk121k. 因為xk 2,所以1xk22. 6

21、 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3

22、 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 所以xk1xk21xk2212k22 212k 21k1. 即xk1 21k1. 所以當nk1 時,不等式xn 21n成立 綜上所述,得xn 21n(nN) 21(本小題滿分 12 分)數(shù)列1n(n1)的前n項和記為Sn. (1)求出S1,S2,S3的值; (2)猜想出Sn的表達式; (3)用數(shù)學歸納法證明你的猜想 (1)解:an1n(n1), S1a112; S2a1a2121623; S3a1a2a3121611234. (2

23、)解:猜想:Snnn1(nN) (3)證明:當n1 時,S1a112,右邊12.等式成立 假設(shè)當nk時,Skkk1, 則當nk1 時,Sk1Skak1kk11(k1)(k2)(k1)2(k1)(k2)k1k2 k1(k1)1. 即當nk1 時,等式成立 由可得Snnn1(nN) 22(本小題滿分 12 分)已知數(shù)列an的前n項和為Sn,且Sn,an的等差中項為 1. (1)寫出a1,a2,a3; (2)猜想an的表達式,并用數(shù)學歸納法證明 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1

24、9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 6 E D B C 3 1 9 1 F 2 3 5 1 D D 8 1 5 F F 3 3 D 4 4 3 5 F 3 7 5 解:(1)由題意Snan2,可得a11,a212,a314. (2)猜想an12n1. 下面用數(shù)學歸納法證明: 當n1 時,a11,12n11201,等式成立 假設(shè)當nk時,等式成立,即ak12k1, 則當nk1 時,由Sk1ak12,Skak2, 得(Sk1Sk)ak1ak0, 即 2ak1ak, 所以ak112ak1212k112(k1)1, 即當nk1 時,等式成立 由可知,對nN,an12n1.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!