《高中數(shù)學(xué) 第一章 計(jì)數(shù)原理章末檢測試卷 新人教A版選修23》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第一章 計(jì)數(shù)原理章末檢測試卷 新人教A版選修23(9頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
第一章 計(jì)數(shù)原理
章末檢測試卷(一)
(時(shí)間:120分鐘 滿分:150分)
一、選擇題(本大題共12小題,每小題5分,共60分)
1.若A=2A,則m的值為( )
A.5 B.3
C.6 D.7
考點(diǎn) 排列數(shù)公式
題點(diǎn) 利用排列數(shù)公式計(jì)算
答案 A
解析 依題意得=2,
化簡得(m-3)(m-4)=2,
解得m=2或m=5,
又m≥5,∴m=5,故選A.
2.一次考試中,要求考生從試卷上的9個(gè)題目中選6個(gè)進(jìn)行解答,其中至少包含前5個(gè)題目中的3個(gè),則考生答題的不同選法的種數(shù)是( )
A.40 B.74
C.84 D.200
考點(diǎn) 組合的應(yīng)用
2、
題點(diǎn) 有限制條件的組合問題
答案 B
解析 分三類:第一類,從前5個(gè)題目中選3個(gè),后4個(gè)題目中選3個(gè);第二類,從前5個(gè)題目中選4個(gè),后4個(gè)題目中選2個(gè);第三類,從前5個(gè)題目中選5個(gè),后4個(gè)題目中選1個(gè),由分類加法計(jì)數(shù)原理得CC+CC+CC=74.
3.若實(shí)數(shù)a=2-,則a10-2Ca9+22Ca8-…+210等于( )
A.32 B.-32
C.1 024 D.512
考點(diǎn) 二項(xiàng)式定理
題點(diǎn) 逆用二項(xiàng)式定理求和、化簡
答案 A
解析 由二項(xiàng)式定理,得a10-2Ca9+22Ca8-…+210=C(-2)0a10+C(-2)1a9+C(-2)2a8+…+C(-2)1
3、0=(a-2)10=(-)10=25=32.
4.分配4名水暖工去3戶不同的居民家里檢查暖氣管道.要求4名水暖工都分配出去,且每戶居民家都要有人去檢查,那么分配的方案共有( )
A.A種 B.AA種
C.CA種 D.CCA種
考點(diǎn) 排列組合綜合問題
題點(diǎn) 分組分配問題
答案 C
解析 先將4名水暖工選出2人分成一組,然后將三組水暖工分配到3戶不同的居民家,故有CA種.
5.(x+2)2(1-x)5中x7的系數(shù)與常數(shù)項(xiàng)之差的絕對值為( )
A.5 B.3
C.2 D.0
考點(diǎn) 二項(xiàng)展開式中的特定項(xiàng)問題
題點(diǎn) 求多項(xiàng)展開式中特定項(xiàng)的系數(shù)
答案 A
解
4、析 常數(shù)項(xiàng)為C22C=4,x7系數(shù)為CC(-1)5=-1,因此x7系數(shù)與常數(shù)項(xiàng)之差的絕對值為5.
6.計(jì)劃展出10幅不同的畫,其中1幅水彩畫、4幅油畫、5幅國畫,排成一列,要求同一品種的畫必須連在一起,并且水彩畫不放在兩端,那么不同的排列方式的種數(shù)為( )
A.AA B.AAA
C.CAA D.AAA
考點(diǎn) 排列的應(yīng)用
題點(diǎn) 元素“相鄰”與“不相鄰”問題
答案 D
解析 先把每個(gè)品種的畫看成一個(gè)整體,而水彩畫只能放在中間,則油畫與國畫放在兩端有A種放法,再考慮4幅油畫本身排放有A種方法,5幅國畫本身排放有A種方法,故不同的陳列法有AAA種.
7.設(shè)(2-x)5=a0+
5、a1x+a2x2+…+a5x5,那么的值為( )
A.- B.-
C.- D.-1
考點(diǎn) 展開式中系數(shù)的和問題
題點(diǎn) 二項(xiàng)展開式中系數(shù)的和問題
答案 B
解析 令x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=-1可得a0-a1+a2-a3+a4-a5=35.兩式相加除以2求得a0+a2+a4=122,兩式相減除以2可得a1+a3+a5=-121.又由條件可知a5=-1,故=-.
8.圓周上有8個(gè)等分圓周的點(diǎn),以這些等分點(diǎn)為頂點(diǎn)的銳角三角形或鈍角三角形的個(gè)數(shù)是( )
A.16 B.24
C.32 D.48
考點(diǎn) 組合的應(yīng)用
題點(diǎn) 與幾何有關(guān)的
6、組合問題
答案 C
解析 圓周上8個(gè)等分點(diǎn)共可構(gòu)成4條直徑,而直徑所對的圓周角是直角,又每條直徑對應(yīng)著6個(gè)直角三角形,共有CC=24(個(gè))直角三角形,斜三角形的個(gè)數(shù)為C-CC=32(個(gè)).
9.將18個(gè)參加青少年科技創(chuàng)新大賽的名額分配給3所學(xué)校,要求每所學(xué)校至少有1個(gè)名額且各校分配的名額互不相等,則不同的分配方法種數(shù)為( )
A.96 B.114
C.128 D.136
考點(diǎn) 排列組合綜合問題
題點(diǎn) 分組分配問題
答案 B
解析 由題意可得每所學(xué)校至少有1個(gè)名額的分配方法種數(shù)為C=136,分配名額相等有22種(可以逐個(gè)數(shù)),則滿足題意的方法有136-22=114(種
7、).
10.已知二項(xiàng)式n的展開式中第4項(xiàng)為常數(shù)項(xiàng),則1+(1-x)2+(1-x)3+…+(1-x)n中x2項(xiàng)的系數(shù)為( )
A.-19 B.19
C.-20 D.20
考點(diǎn) 二項(xiàng)式定理的應(yīng)用
題點(diǎn) 二項(xiàng)式定理的簡單應(yīng)用
答案 D
解析 n的展開式Tk+1=C()n-kk=C,由題意知-=0,得n=5,則所求式子中x2項(xiàng)的系數(shù)為C+C+C+C=1+3+6+10=20.故選D.
11.12名同學(xué)合影,站成前排4人后排8人,現(xiàn)攝影師要從后排8人中抽2人調(diào)整到前排(這樣就成為前排6人,后排6人),若其他人的相對順序不變,則不同調(diào)整方法的總數(shù)是( )
A.CC B.CA
8、
C.CA D.CA
考點(diǎn) 排列組合綜合問題
題點(diǎn) 排列與組合的綜合應(yīng)用
答案 C
解析 先從后排中抽出2人有C種方法,再插空,由題意知,先從4人中的5個(gè)空中插入1人,有5種方法,余下1人則要插入前排5人的空中,有6種方法,即為A,共有CA種調(diào)整方法.
12.已知等差數(shù)列{an}的通項(xiàng)公式為an=3n-5,則(1+x)5+(1+x)6+(1+x)7的展開式中含x4項(xiàng)的系數(shù)是該數(shù)列的( )
A.第9項(xiàng) B.第10項(xiàng)
C.第19項(xiàng) D.第20項(xiàng)
考點(diǎn) 二項(xiàng)式定理的應(yīng)用
題點(diǎn) 二項(xiàng)式定理與其他知識(shí)點(diǎn)的綜合應(yīng)用
答案 D
解析 ∵(1+x)5+(1+x)6+(1+x
9、)7的展開式中含x4項(xiàng)的系數(shù)是C+C+C=5+15+35=55,∴由3n-5=55得n=20.故選D.
二、填空題(本大題共4小題,每小題5分,共20分)
13.男、女學(xué)生共有8人,從男生中選取2人,從女生中選取1人,共有30種不同的選法,其中女生有________人.
考點(diǎn) 組合數(shù)公式
題點(diǎn) 組合數(shù)公式的應(yīng)用
答案 2或3
解析 設(shè)女生有x人,則CC=30,
即x=30,解得x=2或3.
14.學(xué)校公園計(jì)劃在小路的一側(cè)種植丹桂、金桂、銀桂、四季桂4棵桂花樹,垂乳銀杏、金帶銀杏2棵銀杏樹,要求2棵銀杏樹必須相鄰,則不同的種植方法共有________種.
考點(diǎn) 排列的應(yīng)用
題
10、點(diǎn) 元素“相鄰”與“不相鄰”問題
答案 240
解析 分兩步完成:
第一步,將2棵銀杏樹看成一個(gè)元素,考慮其順序,有A種種植方法;
第二步,將銀杏樹與4棵桂花樹全排列,有A種種植方法.
由分步乘法計(jì)數(shù)原理得,不同的種植方法共有AA=240(種).
15.(1+sin x)6的二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的一項(xiàng)的值為,則x在[0,2π]內(nèi)的值為____.
考點(diǎn) 二項(xiàng)式定理的應(yīng)用
題點(diǎn) 二項(xiàng)式定理與其他知識(shí)點(diǎn)的綜合應(yīng)用
答案 或
解析 由題意,得T4=Csin3x=20sin3x=,
∴sin x=.
∵x∈[0,2π],∴x=或x=.
16.將A,B,C,D四個(gè)小球放入
11、編號(hào)為1,2,3的三個(gè)盒子中,若每個(gè)盒子中至少放一個(gè)球且A,B不能放入同一個(gè)盒子中,則不同的放法有________種.
考點(diǎn) 兩個(gè)計(jì)數(shù)原理的應(yīng)用
題點(diǎn) 兩個(gè)原理的綜合應(yīng)用
答案 30
解析 先把A,B放入不同盒中,有32=6(種)放法,再放C,D,
若C,D在同一盒中,只能是第3個(gè)盒,1種放法;
若C,D在不同盒中,則必有一球在第3個(gè)盒中,另一球在A或B的盒中,有22=4(種)放法.
故共有6(1+4)=30(種)放法.
三、解答題(本大題共6小題,共70分)
17.(10分)已知A={x|1
12、從集合A和B中各取一個(gè)元素作直角坐標(biāo)系中點(diǎn)的坐標(biāo),共可得到多少個(gè)不同的點(diǎn)?
(2)從A∪B中取出三個(gè)不同的元素組成三位數(shù),從左到右的數(shù)字要逐漸增大,這樣的三位數(shù)有多少個(gè)?
考點(diǎn) 兩個(gè)計(jì)數(shù)原理的應(yīng)用
題點(diǎn) 兩個(gè)原理的綜合應(yīng)用
解 A={3,4,5,6,7},B={4,5,6,7,8}.
(1)從A中取一個(gè)數(shù)作為橫坐標(biāo),從B中取一個(gè)數(shù)作為縱坐標(biāo),有55=25(個(gè)),而8作為橫坐標(biāo)的情況有5種,3作為縱坐標(biāo)的情況有4種,故共有55+5+4=34(個(gè))不同的點(diǎn).
(2)A∪B={3,4,5,6,7,8},則這樣的三位數(shù)共有C=20(個(gè)).
18.(12分)已知(1+2)n的展開式中,某一
13、項(xiàng)的系數(shù)恰好是它的前一項(xiàng)系數(shù)的2倍,而且是它的后一項(xiàng)系數(shù)的倍,試求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).
考點(diǎn) 二項(xiàng)式定理的應(yīng)用
題點(diǎn) 二項(xiàng)式定理的簡單應(yīng)用
解 二項(xiàng)式的通項(xiàng)為Tk+1=C(2k),
由題意知展開式中第k+1項(xiàng)系數(shù)是第k項(xiàng)系數(shù)的2倍,是第k+2項(xiàng)系數(shù)的倍,
∴
解得n=7.
∴展開式中二項(xiàng)式系數(shù)最大兩項(xiàng)是
T4=C(2)3=280與T5=C(2)4=560x2.
19.(12分)10件不同廠生產(chǎn)的同類產(chǎn)品:
(1)在商品評選會(huì)上,有2件商品不能參加評選,要選出4件商品,并排定選出的4件商品的名次,有多少種不同的選法?
(2)若要選6件商品放在不同的位置上陳列,且必須
14、將獲金質(zhì)獎(jiǎng)?wù)碌膬杉唐贩派?,有多少種不同的布置方法?
考點(diǎn) 排列組合綜合問題
題點(diǎn) 排列與組合的綜合應(yīng)用
解 (1)10件商品,除去不能參加評選的2件商品,剩下8件,從中選出4件進(jìn)行排列,有A=1 680(或CA)(種).
(2)分步完成,先將獲金質(zhì)獎(jiǎng)?wù)碌膬杉唐凡贾迷?個(gè)位置中的兩個(gè)位置上,有A種方法,再從剩下的8件商品中選出4件,布置在剩下的4個(gè)位置上,有A種方法,共有AA=50 400(或CA)(種).
20.(12分)設(shè)m=a0+a1x+a2x2+a3x3+…+amxm,若a0,a1,a2成等差數(shù)列.
(1)求m展開式的中間項(xiàng);
(2)求m展開式中所有含x的奇次冪的系數(shù)和
15、.
考點(diǎn) 二項(xiàng)式定理的應(yīng)用
題點(diǎn) 二項(xiàng)式定理的簡單應(yīng)用
解 (1)依題意a0=1,a1=,a2=C2.
由2a1=a0+a2,
求得m=8或m=1(應(yīng)舍去),
所以m展開式的中間項(xiàng)是第五項(xiàng),
T5=C4=x4.
(2)因?yàn)閙=a0+a1x+a2x2+…+amxm,
即8=a0+a1x+a2x2+…+a8x8.
令x=1,則a0+a1+a2+a3+…+a8=8,
令x=-1,則a0-a1+a2-a3+…+a8=8,
所以a1+a3+a5+a7==,
所以展開式中所有含x的奇次冪的系數(shù)和為.
21.(12分)把n個(gè)正整數(shù)全排列后得到的數(shù)叫做“再生數(shù)”,“再生數(shù)”中最大的
16、數(shù)叫做最大再生數(shù),最小的數(shù)叫做最小再生數(shù).
(1)求1,2,3,4的再生數(shù)的個(gè)數(shù),以及其中的最大再生數(shù)和最小再生數(shù);
(2)試求任意5個(gè)正整數(shù)(可相同)的再生數(shù)的個(gè)數(shù).
考點(diǎn) 排列的應(yīng)用
題點(diǎn) 數(shù)字的排列問題
解 (1)1,2,3,4的再生數(shù)的個(gè)數(shù)為A=24,其中最大再生數(shù)為4 321,最小再生數(shù)為1 234.
(2)需要考查5個(gè)數(shù)中相同數(shù)的個(gè)數(shù).
若5個(gè)數(shù)各不相同,有A=120(個(gè));
若有2個(gè)數(shù)相同,則有=60(個(gè));
若有3個(gè)數(shù)相同,則有=20(個(gè));
若有4個(gè)數(shù)相同,則有=5(個(gè));
若5個(gè)數(shù)全相同,則有1個(gè).
22.(12分)已知m,n是正整數(shù),f(x)=(1
17、+x)m+(1+x)n的展開式中x的系數(shù)為7.
(1)對于使f(x)的x2的系數(shù)為最小的m,n,求出此時(shí)x3的系數(shù);
(2)利用上述結(jié)果,求f(0.003)的近似值;(精確到0.01)
(3)已知(1+2x)8展開式的二項(xiàng)式系數(shù)的最大值為a,系數(shù)的最大值為b,求.
考點(diǎn) 二項(xiàng)式定理的應(yīng)用
題點(diǎn) 二項(xiàng)式定理的簡單應(yīng)用
解 (1)根據(jù)題意得C+C=7,
即m+n=7,①
f(x)中的x2的系數(shù)為
C+C
=+
=.
將①變形為n=7-m代入上式得x2的系數(shù)為
m2-7m+21
=2+,
故當(dāng)m=3或m=4時(shí),x2的系數(shù)的最小值為9.
當(dāng)m=3,n=4時(shí),x3的系數(shù)為
18、C+C=5;
當(dāng)m=4,n=3時(shí),x3的系數(shù)為C+C=5.
(2)f(0.003)=(1+0.003)4+(1+0.003)3
≈C+C0.003+C+C0.003≈2.02.
(3)由題意可得a=C=70,再根據(jù)
即
求得k=5或6,此時(shí),b=728,
∴=.
6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375