《高考數(shù)學復習 第七章 直線和圓的方程》由會員分享,可在線閱讀,更多相關《高考數(shù)學復習 第七章 直線和圓的方程(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
高考數(shù)學精品復習資料
2019.5
高中數(shù)學第七章-直線和圓的方程
考試內(nèi)容:
數(shù)學探索版權所有直線的傾斜角和斜率,直線方程的點斜式和兩點式.直線方程的一般式.
數(shù)學探索版權所有兩條直線平行與垂直的條件.兩條直線的交角.點到直線的距離.
數(shù)學探索版權所有用二元一次不等式表示平面區(qū)域.簡單的線性規(guī)劃問題.
數(shù)學探索版權所有曲線與方程的概念.由已知條件列出曲線方程.
數(shù)學探索版權所有圓的標準方程和一般方程.圓的參數(shù)方程.
數(shù)學探索版權所有考試要求:
數(shù)學探索版權所有(1)理解直線的傾斜角和斜率的概念,掌握過兩點的
2、直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程.
數(shù)學探索版權所有(2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關系.
數(shù)學探索版權所有(3)了解二元一次不等式表示平面區(qū)域.
數(shù)學探索版權所有(4)了解線性規(guī)劃的意義,并會簡單的應用.
數(shù)學探索版權所有(5)了解解析幾何的基本思想,了解坐標法.
數(shù)學探索版權所有(6)掌握圓的標準方程和一般方程,了解參數(shù)方程的概念。理解圓的參數(shù)方程.
07. 直線和圓的方程 知識要點
一、直線方程.
1. 直線的傾斜角:一條直線向上的方向與軸正方
3、向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.
注:①當或時,直線垂直于軸,它的斜率不存在.
②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當直線的斜率一定時,其傾斜角也對應確定.
2. 直線方程的幾種形式:點斜式、截距式、兩點式、斜切式.
特別地,當直線經(jīng)過兩點,即直線在軸,軸上的截距分別為時,直線方程是:.
注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.
附:直線系:對于直線的斜截式方程,當均為確定的數(shù)值時,它表示一條確定的直線,如果變化時,對應的直線也會變化.
4、①當為定植,變化時,它們表示過定點(0,)的直線束.②當為定值,變化時,它們表示一組平行直線.
3. ⑴兩條直線平行:
∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應特別注意,抽掉或忽視其中任一個“前提”都會導致結論的錯誤.
(一般的結論是:對于兩條直線,它們在軸上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)
推論:如果兩條直線的傾斜角為則∥.
⑵兩條直線垂直:
兩條直線垂直的條件:①設兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜
5、率不存在. (即是垂直的充要條件)
4. 直線的交角:
⑴直線到的角(方向角);直線到的角,是指直線繞交點依逆時針方向旋轉到與重合時所轉動的角,它的范圍是,當時.
⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個角中最小的正角,又稱為和所成的角,它的取值范圍是,當,則有.
5. 過兩直線的交點的直線系方程為參數(shù),不包括在內(nèi))
6. 點到直線的距離:
⑴點到直線的距離公式:設點,直線到的距離為,則有.
注:
1. 兩點P1(x1,y1)、P2(x2,y2)的距離公式:.
特例:點P(x,y)到原點O的距離:
2. 定比分點坐標分式。若點P(x,y)分有向
6、線段,其中P1(x1,y1),P2(x2,y2).則
特例,中點坐標公式;重要結論,三角形重心坐標公式。
3. 直線的傾斜角(0≤<180)、斜率:
4. 過兩點.
當(即直線和x軸垂直)時,直線的傾斜角=,沒有斜率
⑵兩條平行線間的距離公式:設兩條平行直線,它們之間的距離為,則有.
注;直線系方程
1. 與直線:Ax+By+C= 0平行的直線系方程是:Ax+By+m=0.( m?R, C≠m).
2. 與直線:Ax+By+C= 0垂直的直線系方程是:Bx-Ay+m=0.( m?R)
3. 過定點(x1,y1)的直線系方程是: A(x-x1)+B(y-y1)=0
7、 (A,B不全為0)
4. 過直線l1、l2交點的直線系方程:(A1x+B1y+C1)+λ( A2x+B2y+C2)=0 (λ?R) 注:該直線系不含l2.
7. 關于點對稱和關于某直線對稱:
⑴關于點對稱的兩條直線一定是平行直線,且這個點到兩直線的距離相等.
⑵關于某直線對稱的兩條直線性質:若兩條直線平行,則對稱直線也平行,且兩直線到對稱直線距離相等.
若兩條直線不平行,則對稱直線必過兩條直線的交點,且對稱直線為兩直線夾角的角平分線.
⑶點關于某一條直線對稱,用中點表示兩對稱點,則中點在對稱直線上(方程①),過兩對稱點的直線方程與對稱直線方程垂直(方程②)①②可解得所求
8、對稱點.
注:①曲線、直線關于一直線()對稱的解法:y換x,x換y. 例:曲線f(x ,y)=0關于直線y=x–2對稱曲線方程是f(y+2 ,x –2)=0.
②曲線C: f(x ,y)=0關于點(a ,b)的對稱曲線方程是f(a – x, 2b – y)=0.
二、圓的方程.
1. ⑴曲線與方程:在直角坐標系中,如果某曲線上的 與一個二元方程的實數(shù)建立了如下關系:
①曲線上的點的坐標都是這個方程的解.
②以這個方程的解為坐標的點都是曲線上的點.
那么這個方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).
⑵曲線和方程的關系,實質上是曲線上任一點其坐標與方程的一種關系,曲線
9、上任一點是方程的解;反過來,滿足方程的解所對應的點是曲線上的點.
注:如果曲線C的方程是f(x ,y)=0,那么點P0(x0 ,y)線C上的充要條件是f(x0 ,y0)=0
2. 圓的標準方程:以點為圓心,為半徑的圓的標準方程是.
特例:圓心在坐標原點,半徑為的圓的方程是:.
注:特殊圓的方程:①與軸相切的圓方程
②與軸相切的圓方程
③與軸軸都相切的圓方程
3. 圓的一般方程: .
當時,方程表示一個圓,其中圓心,半徑.
當時,方程表示一個點.
當時,方程無圖形(稱虛圓).
注:①圓的參數(shù)方程:(為參數(shù)).
②方程表示圓的充要條件
10、是:且且.
③圓的直徑或方程:已知(用向量可征).
4. 點和圓的位置關系:給定點及圓.
①在圓內(nèi)
②在圓上
③在圓外
5. 直線和圓的位置關系:
設圓圓:; 直線:;
圓心到直線的距離.
①時,與相切;
附:若兩圓相切,則相減為公切線方程.
②時,與相交;
附:公共弦方程:設
有兩個交點,則其公共弦方程為.
③時,與相離.
附:若兩圓相離,則相減為圓心的連線的中與線方程.
由代數(shù)特征判斷:方程組用代入法,得關于(或)的一元二次方程,其判別式為,則:
與相切;
與相交;
與相離.
注:若兩圓為同心圓則,相減,不表示直線.
6.
11、圓的切線方程:圓的斜率為的切線方程是過圓
上一點的切線方程為:.
①一般方程若點(x0 ,y0)在圓上,則(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特別地,過圓上一點的切線方程為.
②若點(x0 ,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程.
7. 求切點弦方程:方法是構造圖,則切點弦方程即轉化為公共弦方程. 如圖:ABCD四類共圓. 已知的方程…① 又以ABCD為圓為方程為…②
…③,所以BC的方程即③代②,①②相切即為所求.
三、曲線和方程
1.曲線與方程:在直角坐標系中,如果曲線C和方程f(x,y)=0的實數(shù)解建立了如下的關系:
1) 曲線C上的點的坐標都是方程f(x,y)=0的解(純粹性);
2) 方程f(x,y)=0的解為坐標的點都在曲線C上(完備性)。則稱方程f(x,y)=0為曲線C的方程,曲線C叫做方程f(x,y)=0的曲線。
2.求曲線方程的方法:.
1)直接法:建系設點,列式表標,簡化檢驗; 2)參數(shù)法; 3)定義法, 4)待定系數(shù)法.