初中一年級數(shù)學(xué)總復(fù)習(xí)提綱[共28頁]
《初中一年級數(shù)學(xué)總復(fù)習(xí)提綱[共28頁]》由會(huì)員分享,可在線閱讀,更多相關(guān)《初中一年級數(shù)學(xué)總復(fù)習(xí)提綱[共28頁](29頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、初中數(shù)學(xué)總復(fù)習(xí)提綱 第一章 實(shí)數(shù) ★重點(diǎn)★ 實(shí)數(shù)的有關(guān)概念及性質(zhì),實(shí)數(shù)的運(yùn)算 ☆內(nèi)容提要☆ 一、 重要概念 1.?dāng)?shù)的分類及概念 數(shù)系表: 說明:“分類”的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn) 2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0) 常見的非負(fù)數(shù)有: 性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。 3.倒數(shù): ①定義及表示法 ②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1時(shí)1/a>1;a>1時(shí),1/a<1;D.積為1。 4.相反數(shù): ①定義及表示法 ②性質(zhì):A.a≠0時(shí),a≠-a;
2、B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。 5.?dāng)?shù)軸:①定義(“三要素”) ②作用:A.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對應(yīng)關(guān)系。 6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù)) 定義及表示: 奇數(shù):2n-1 偶數(shù):2n(n為自然數(shù)) 7.絕對值:①定義(兩種): 代數(shù)定義: 幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對應(yīng)的點(diǎn)到原點(diǎn)的距離。 ②│a│≥0,符號“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對值只有一個(gè);④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。 二、 實(shí)數(shù)的運(yùn)算 1.
3、運(yùn)算法則(加、減、乘、除、乘方、開方) 2. 運(yùn)算定律(五個(gè)—加法[乘法]交換律、結(jié)合律;[乘法對加法的] 分配律) 3. 運(yùn)算順序:A.高級運(yùn)算到低級運(yùn)算;B.(同級運(yùn)算)從“左” 到“右”(如5÷ ×5);C.(有括號時(shí))由“小”到“中”到“大”。 三、 應(yīng)用舉例(略) 附:典型例題 1. 已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│ =b-a. 2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。 第二章 代數(shù)式 ★重點(diǎn)★代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運(yùn)算 ☆內(nèi)
4、容提要☆ 一、 重要概念 分類: 1.代數(shù)式與有理式 用運(yùn)算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú) 的一個(gè)數(shù)或字母也是代數(shù)式。 整式和分式統(tǒng)稱為有理式。 2.整式和分式 含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。 沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。 有除法運(yùn)算并且除式中含有字母的有理式叫做分式。 3.單項(xiàng)式與多項(xiàng)式 沒有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積—包括單獨(dú)的一個(gè)數(shù)或字母) 幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。 說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開
5、;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時(shí),是從外形來看。如, =x, =│x│等。 4.系數(shù)與指數(shù) 區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看 5.同類項(xiàng)及其合并 條件:①字母相同;②相同字母的指數(shù)相同 合并依據(jù):乘法分配律 6.根式 表示方根的代數(shù)式叫做根式。 含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。 注意:①從外形上判斷;②區(qū)別: 、 是根式,但不是無理式(是無理數(shù))。 7.算術(shù)平方根 ⑴正數(shù)a的正的平方根( [a≥0—與“平方根”的區(qū)別]);
6、 ⑵算術(shù)平方根與絕對值 ① 聯(lián)系:都是非負(fù)數(shù), =│a│ ②區(qū)別:│a│中,a為一切實(shí)數(shù); 中,a為非負(fù)數(shù)。 8.同類二次根式、最簡二次根式、分母有理化 化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。 滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。 把分母中的根號劃去叫做分母有理化。 9.指數(shù) ⑴ ( —冪,乘方運(yùn)算) ① a>0時(shí), >0;②a<0時(shí), >0(n是偶數(shù)), <0(n是奇數(shù)) ⑵零指數(shù): =1(a≠0) 負(fù)整指數(shù): =1/ (a≠0,p是正整數(shù)) 二
7、、 運(yùn)算定律、性質(zhì)、法則 1.分式的加、減、乘、除、乘方、開方法則 2.分式的性質(zhì) ⑴基本性質(zhì): = (m≠0) ⑵符號法則: ⑶繁分式:①定義;②化簡方法(兩種) 3.整式運(yùn)算法則(去括號、添括號法則) 4.冪的運(yùn)算性質(zhì):① · = ;② ÷ = ;③ = ;④ = ;⑤ 技巧: 5.乘法法則:⑴單×單;⑵單×多;⑶多×多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (a±b) = 7.除法法則:⑴單÷單;⑵多÷單
8、。 8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。 9.算術(shù)根的性質(zhì): = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用) 10.根式運(yùn)算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. . 11.科學(xué)記數(shù)法: (1≤a<10,n是整數(shù)= 三、 應(yīng)用舉例(略) 四、 數(shù)式綜合運(yùn)算(略) 第三章 統(tǒng)計(jì)初步 ★重點(diǎn)★ ☆ 內(nèi)容提要☆ 一、 重要概念 1.總體:考察對象的全體。 2.個(gè)體:總體中每一個(gè)考察對象。 3.樣本:從總體中抽出的一部分個(gè)體。
9、 4.樣本容量:樣本中個(gè)體的數(shù)目。 5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。 6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個(gè)數(shù)(或最中間位置的兩個(gè)數(shù)據(jù)的平均數(shù)) 二、 計(jì)算方法 1.樣本平均數(shù):⑴ ;⑵若 , ,…, ,則 (a—常數(shù), , ,…, 接近較整的常數(shù)a);⑶加權(quán)平均數(shù): ;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計(jì)總體平均數(shù),樣本容量越大,估計(jì)越準(zhǔn)確。 2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a—接近 、 、…、 的平均數(shù)的較“整”的常數(shù));若 、 、…、 較“小”較“整”,則 ;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動(dòng)大小
10、)的特征數(shù),當(dāng)樣本容量較大時(shí),樣本方差非常接近總體方差,通常用樣本方差去估計(jì)總體方差。 3.樣本標(biāo)準(zhǔn)差: 三、 應(yīng)用舉例(略) 第四章 直線形 ★重點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。 ☆ 內(nèi)容提要☆ 一、 直線、相交線、平行線 1.線段、射線、直線三者的區(qū)別與聯(lián)系 從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。 2.線段的中點(diǎn)及表示 3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”) 4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線) 5.角
11、(平角、周角、直角、銳角、鈍角) 6.互為余角、互為補(bǔ)角及表示方法 7.角的平分線及其表示 8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”) 9.對頂角及性質(zhì) 10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系) 11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。 12.定義、命題、命題的組成 13.公理、定理 14.逆命題 二、 三角形 分類:⑴按邊分; ⑵按角分 1.定義(包括內(nèi)、外角) 2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于
12、第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中, 3.三角形的主要線段 討論:①定義②××線的交點(diǎn)—三角形的×心③性質(zhì) ① 高線②中線③角平分線④中垂線⑤中位線 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形 4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì) 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②專用方法 6.三角形的面積 ⑴一般計(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。 7.重要輔助線 ⑴中點(diǎn)配中點(diǎn)構(gòu)
13、成中位線;⑵加倍中線;⑶添加輔助平行線 8.證明方法 ⑴直接證法:綜合法、分析法 ⑵間接證法—反證法:①反設(shè)②歸謬③結(jié)論 ⑶證線段相等、角相等常通過證三角形全等 ⑷證線段倍分關(guān)系:加倍法、折半法 ⑸證線段和差關(guān)系:延結(jié)法、截余法 ⑹證面積關(guān)系:將面積表示出來 三、 四邊形 分類表: 1.一般性質(zhì)(角) ⑴內(nèi)角和:360° ⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。 推論1:順次連結(jié)對角線相等的四邊形各邊中點(diǎn)得菱形。 推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點(diǎn)得矩形。 ⑶外角和:360° 2.特殊四邊形 ⑴研究它們的一般方法: ⑵平行四邊形、矩形
14、、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定 ⑶判定步驟:四邊形→平行四邊形→矩形→正方形 ┗→菱形——↑ ⑷對角線的紐帶作用: 3.對稱圖形 ⑴軸對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì)) 4.有關(guān)定理:①平行線等分線段定理及其推論1、2 ②三角形、梯形的中位線定理 ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形) 5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結(jié)頂點(diǎn)和對腰中點(diǎn)并延長與底邊相交”轉(zhuǎn)化為三角形。 6.作圖:任意等分線段。 四、 應(yīng)用舉例(略) 第五章 方程(組) ★重點(diǎn)★一元
15、一次、一元二次方程,二元一次方程組的解法;方程的有關(guān)應(yīng)用題(特別是行程、工程問題) ☆ 內(nèi)容提要☆ 一、 基本概念 1.方程、方程的解(根)、方程組的解、解方程(組) 2. 分類: 二、 解方程的依據(jù)—等式性質(zhì) 1.a(chǎn)=b←→a+c=b+c 2.a(chǎn)=b←→ac=bc (c≠0) 三、 解法 1.一元一次方程的解法:去分母→去括號→移項(xiàng)→合并同類項(xiàng)→ 系數(shù)化成1→解。 2. 元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法 ②加減法 四、 一元二次方程 1.定義及一般形式: 2.解法:⑴直接開平方法(注意特征) ⑵配
16、方法(注意步驟—推倒求根公式) ⑶公式法: ⑷因式分解法(特征:左邊=0) 3.根的判別式: 4.根與系數(shù)頂?shù)年P(guān)系: 逆定理:若 ,則以 為根的一元二次方程是: 。 5.常用等式: 五、 可化為一元二次方程的方程 1.分式方程 ⑴定義 ⑵基本思想: ⑶基本解法:①去分母法②換元法(如, ) ⑷驗(yàn)根及方法 2.無理方程 ⑴定義 ⑵基本思想: ⑶基本解法:①乘方法(注意技巧?。。趽Q元法(例, )⑷驗(yàn)根及方法 3.簡單的二元二次方程組 由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。 六、
17、 列方程(組)解應(yīng)用題 一概述 列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是: ⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。 ⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。 ⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。 ⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。 ⑸解方程及檢驗(yàn)。 ⑹答案。 綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致
18、實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。 二常用的相等關(guān)系 1. 行程問題(勻速運(yùn)動(dòng)) 基本關(guān)系:s=vt ⑴相遇問題(同時(shí)出發(fā)): + = ; ⑵追及問題(同時(shí)出發(fā)): 若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則 ⑶水中航行: ; 2. 配料問題:溶質(zhì)=溶液×濃度 溶液=溶質(zhì)+溶劑 3.增長率問題: 4.工程問題:基本關(guān)系:工作量=工作效率×工作時(shí)間(常把工作量看著單位“1”)。 5.幾何問題:常用勾股定理,幾何體的面積、
19、體積公式,相似形及有關(guān)比例性質(zhì)等。 三注意語言與解析式的互化 如,“多”、“少”、“增加了”、“增加為(到)”、“同時(shí)”、“擴(kuò)大為(到)”、“擴(kuò)大了”、…… 又如,一個(gè)三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c,則這個(gè)三位數(shù)為:100a+10b+c,而不是abc。 四注意從語言敘述中寫出相等關(guān)系。 如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算 如,“小時(shí)”“分鐘”的換算;s、v、t單位的一致等。 七、應(yīng)用舉例(略) 第六章 一元一次不等式(組) ★重點(diǎn)★一元一次不等式的性質(zhì)、解法 ☆ 內(nèi)容提要☆ 1.
20、 定義:a>b、a<b、a≥b、a≤b、a≠b。 2. 一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。 3. 一元一次不等式組: 4. 不等式的性質(zhì):⑴a>b←→a+c>b+c ⑵a>b←→ac>bc(c>0) ⑶a>b←→ac<bc(c<0) ⑷(傳遞性)a>b,b>c→a>c ⑸a>b,c>d→a+c>b+d. 5.一元一次不等式的解、解一元一次不等式 6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集) 7.應(yīng)用舉例(略) 第七章 相似
21、形 ★重點(diǎn)★相似三角形的判定和性質(zhì) ☆內(nèi)容提要☆ 一、本章的兩套定理 第一套(比例的有關(guān)性質(zhì)): 涉及概念:①第四比例項(xiàng)②比例中項(xiàng)③比的前項(xiàng)、后項(xiàng),比的內(nèi)項(xiàng)、外項(xiàng)④黃金分割等。 第二套: 注意:①定理中“對應(yīng)”二字的含義; ②平行→相似(比例線段)→平行。 二、相似三角形性質(zhì) 1.對應(yīng)線段…;2.對應(yīng)周長…;3.對應(yīng)面積…。 三、相關(guān)作圖 ①作第四比例項(xiàng);②作比例中項(xiàng)。 四、證(解)題規(guī)律、輔助線 1.“等積”變“比例”,“比例”找“相似”。 2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴ ⑵ ⑶ 3.添加輔助平行線是獲得成比例線段和
22、相似三角形的重要途徑。 4.對比例問題,常用處理方法是將“一份”看著k;對于等比問題,常用處理辦法是設(shè)“公比”為k。 5.對于復(fù)雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來的辦法處理。 五、 應(yīng)用舉例(略) 第八章 函數(shù)及其圖象 ★重點(diǎn)★正、反比例函數(shù),一次、二次函數(shù)的圖象和性質(zhì)。 ☆ 內(nèi)容提要☆ 一、平面直角坐標(biāo)系 1.各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn) 2.坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn) 3.關(guān)于坐標(biāo)軸、原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特點(diǎn) 4.坐標(biāo)平面內(nèi)點(diǎn)與有序?qū)崝?shù)對的對應(yīng)關(guān)系 二、函數(shù) 1.表示方法:⑴解析法;⑵列表法;⑶圖象法。 2.確定自變量取值范圍的原則:⑴使代數(shù)
23、式有意義;⑵使實(shí)際問題有 意義。 3.畫函數(shù)圖象:⑴列表;⑵描點(diǎn);⑶連線。 三、幾種特殊函數(shù) (定義→圖象→性質(zhì)) 1. 正比例函數(shù) ⑴定義:y=kx(k≠0) 或y/x=k。 ⑵圖象:直線(過原點(diǎn)) ⑶性質(zhì):①k>0,…②k<0,… 2. 一次函數(shù) ⑴定義:y=kx+b(k≠0) ⑵圖象:直線過點(diǎn)(0,b)—與y軸的交點(diǎn)和(-b/k,0)—與x軸的交點(diǎn)。 ⑶性質(zhì):①k>0,…②k<0,… ⑷圖象的四種情況: 3. 二次函數(shù) ⑴定義: 特殊地, 都是二次函數(shù)。 ⑵圖象:拋物線(用描點(diǎn)法畫出:先確定頂點(diǎn)、對稱軸、
24、開口方向,再對稱地描點(diǎn))。 用配方法變?yōu)?,則頂點(diǎn)為(h,k);對稱軸為直線x=h;a>0時(shí),開口向上;a<0時(shí),開口向下。 ⑶性質(zhì):a>0時(shí),在對稱軸左側(cè)…,右側(cè)…;a<0時(shí),在對稱軸左側(cè)…,右側(cè)…。 4.反比例函數(shù) ⑴定義: 或xy=k(k≠0)。 ⑵圖象:雙曲線(兩支)—用描點(diǎn)法畫出。 ⑶性質(zhì):①k>0時(shí),圖象位于…,y隨x…;②k<0時(shí),圖象位于…,y隨x…;③兩支曲線無限接近于坐標(biāo)軸但永遠(yuǎn)不能到達(dá)坐標(biāo)軸。 四、重要解題方法 1. 用待定系數(shù)法求解析式(列方程[組]求解)。對求二次函數(shù)的解析式,要合理選用一般式或頂點(diǎn)式,并應(yīng)充分運(yùn)用拋物
25、線關(guān)于對稱軸對稱的特點(diǎn),尋找新的點(diǎn)的坐標(biāo)。如下圖: 2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號。 六、應(yīng)用舉例(略) 第九章 解直角三角形 ★重點(diǎn)★解直角三角形 ☆ 內(nèi)容提要☆ 一、三角函數(shù) 1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= . 2. 特殊角的三角函數(shù)值: 0° 30° 45° 60° 90° sinα cosα tgα / ctgα / 3. 互余兩
26、角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;… 4. 三角函數(shù)值隨角度變化的關(guān)系 5.查三角函數(shù)表 二、解直角三角形 1. 定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。 2. 依據(jù):①邊的關(guān)系: ②角的關(guān)系:A+B=90° ③邊角關(guān)系:三角函數(shù)的定義。 注意:盡量避免使用中間數(shù)據(jù)和除法。 三、對實(shí)際問題的處理 1. 俯、仰角: 2.方位角、象限角: 3.坡度: 4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。 四、應(yīng)用舉例(略) 第十章 圓 ★重點(diǎn)
27、★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。 ☆ 內(nèi)容提要☆ 一、圓的基本性質(zhì) 1.圓的定義(兩種) 2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。 3.“三點(diǎn)定圓”定理 4.垂徑定理及其推論 5.“等對等”定理及其推論 5. 與圓有關(guān)的角:⑴圓心角定義(等對等定理) ⑵圓周角定義(圓周角定理,與圓心角的關(guān)系) ⑶弦切角定義(弦切角定理) 二、直線和圓的位置關(guān)系 1.三種位置及判定與性質(zhì): 2.切線的性質(zhì)(重點(diǎn)) 3.切線的判定定理(重點(diǎn))。圓的切線的判定有⑴…⑵
28、… 4.切線長定理 三、圓換圓的位置關(guān)系 1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切) 2.相切(交)兩圓連心線的性質(zhì)定理 3.兩圓的公切線:⑴定義⑵性質(zhì) 四、與圓有關(guān)的比例線段 1.相交弦定理 2.切割線定理 五、與和正多邊形 1.圓的內(nèi)接、外切多邊形(三角形、四邊形) 2.三角形的外接圓、內(nèi)切圓及性質(zhì) 3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì) 4.正多邊形及計(jì)算 中心角: 內(nèi)角的一半: (右圖) (解Rt△OAM可求出相關(guān)元素, 、 等) 六、 一組計(jì)算公式 1.圓周長公式 2.圓面積公式 3.扇形面積公式 4.弧長公式 5.弓形面積的計(jì)算方法 6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計(jì)算 七、 點(diǎn)的軌跡 六條基本軌跡 八、 有關(guān)作圖 1.作三角形的外接圓、內(nèi)切圓 2.平分已知弧 3.作已知兩線段的比例中項(xiàng) 4.等分圓周:4、8;6、3等分 九、 基本圖形 十、 重要輔助線 1.作半徑 2.見弦往往作弦心距 3.見直徑往往作直徑上的圓周角 4.切點(diǎn)圓心莫忘連 5.兩圓相切公切線(連心線) 6.兩圓相交公共弦
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 優(yōu)化工作流程提高工作效率
- 文化創(chuàng)新優(yōu)秀課件
- 急性白血病免疫分型ppt課件
- 圓錐曲線性質(zhì)的探討與幾何證明的簡單應(yīng)用
- 材料作文寫作技巧
- 機(jī)械制圖螺紋畫法
- 低價(jià)中標(biāo)合理性的確定和約束機(jī)制的研究報(bào)告
- 綜合性學(xué)習(xí)的復(fù)習(xí)
- 函數(shù)的極值與最值
- 醫(yī)療衛(wèi)生類通用PPT模板
- 中國最美的100個(gè)地方
- 住院醫(yī)師規(guī)范化培訓(xùn)發(fā)展歷程
- 六年級數(shù)學(xué)上冊百分?jǐn)?shù)解決問題
- 某工程有限公司項(xiàng)目入廠安全培訓(xùn)教材
- 液態(tài)光學(xué)膠應(yīng)用