《中考(數(shù)學(xué))分類三 二次函數(shù)與面積有關(guān)的問題(含答案)-歷年真題常考、重難點(diǎn)題型講練》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考(數(shù)學(xué))分類三 二次函數(shù)與面積有關(guān)的問題(含答案)-歷年真題???、重難點(diǎn)題型講練(14頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、數(shù)學(xué)專題 精心整理
類型三二次函數(shù)與圖形面積問題
【典例1】已知直線交軸于點(diǎn),交軸于點(diǎn),二次函數(shù)的圖象過兩點(diǎn),交軸于另一點(diǎn),,且對(duì)于該二次函數(shù)圖象上的任意兩點(diǎn),,當(dāng)時(shí),總有.
(1)求二次函數(shù)的表達(dá)式;
(2)若直線,求證:當(dāng)時(shí),;
(3)為線段上不與端點(diǎn)重合的點(diǎn),直線過點(diǎn)且交直線于點(diǎn),求與面積之和的最小值.
【答案】(1);(2)詳見解析;(3)的最小值為.
【解析】
【分析】
(1)先根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征由一次函數(shù)的表達(dá)式求出A,B兩點(diǎn)的坐標(biāo),再根據(jù)BC=4,得出點(diǎn)C的坐標(biāo),最后利用待定系數(shù)法可求二次函數(shù)的表達(dá)式;
(2)利用反證法證明即可;
(3)先求出q的值,
2、利用,得出,設(shè),然后用含t的式子表示出的面積,再利用二次函數(shù)的性質(zhì)求解即可.
【詳解】
解:(1)對(duì)于,
當(dāng)時(shí),,所以;
當(dāng)時(shí),,,所以,
又因?yàn)椋曰颍?
若拋物線過,則當(dāng)時(shí),隨的增大而減少,不符合題意,舍去.
若拋物線過,則當(dāng)時(shí),必有隨的增大而增大,符合題意.
故可設(shè)二次函數(shù)的表達(dá)式為,
依題意,二次函數(shù)的圖象過,兩點(diǎn),
所以,解得
所求二次函數(shù)的表達(dá)式為.
(2)當(dāng)時(shí),直線與直線不重合,
假設(shè)和不平行,則和必相交,設(shè)交點(diǎn)為,
由得,
解得,與已知矛盾,所以與不相交,
所以.
(3)如圖,
因?yàn)橹本€過,所以,
又因?yàn)橹本€,所以,即,
所以,,
3、所以,所以,
設(shè),則,
,
所以,
所以
所以當(dāng)時(shí),的最小值為.
【點(diǎn)睛】
本題考查了一次函數(shù)和二次函數(shù)的圖象與性質(zhì)、相似三角形的性質(zhì)與判定、三角形面積等基礎(chǔ)知識(shí),注意函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想及分類與整合思想的運(yùn)用.
【典例2】如圖,在平面直角坐標(biāo)系中,拋物線交軸于,兩點(diǎn),交軸于點(diǎn),且,點(diǎn)是第三象限內(nèi)拋物線上的一動(dòng)點(diǎn).
(1)求此拋物線的表達(dá)式;
(2)若,求點(diǎn)的坐標(biāo);
(3)連接,求面積的最大值及此時(shí)點(diǎn)的坐標(biāo).
【答案】(1);(2)(,);(3)面積的最大值是8;點(diǎn)的坐標(biāo)為(,).
【解析】
【分析】
(1)由二次函數(shù)的性質(zhì),求
4、出點(diǎn)C的坐標(biāo),然后得到點(diǎn)A、點(diǎn)B的坐標(biāo),再求出解析式即可;
(2)由,則點(diǎn)P的縱坐標(biāo)為,代入解析式,即可求出點(diǎn)P的坐標(biāo);
(3)先求出直線AC的解析式,過點(diǎn)P作PD∥y軸,交AC于點(diǎn)D,則,設(shè)點(diǎn)P為(,),則點(diǎn)D為(,),求出PD的長度,利用二次函數(shù)的性質(zhì),即可得到面積的最大值,再求出點(diǎn)P的坐標(biāo)即可.
【詳解】
解:(1)在拋物線中,
令,則,
∴點(diǎn)C的坐標(biāo)為(0,),
∴OC=2,
∵,
∴,,
∴點(diǎn)A為(,0),點(diǎn)B為(,0),
則把點(diǎn)A、B代入解析式,得
,解得:,
∴;
(2)由題意,∵,點(diǎn)C為(0,),
∴點(diǎn)P的縱坐標(biāo)為,
令,則,
解得:,,
∴
5、點(diǎn)P的坐標(biāo)為(,);
(3)設(shè)直線AC的解析式為,則
把點(diǎn)A、C代入,得
,解得:,
∴直線AC的解析式為;
過點(diǎn)P作PD∥y軸,交AC于點(diǎn)D,如圖:
設(shè)點(diǎn)P 為(,),則點(diǎn)D為(,),
∴,
∵OA=4,
∴,
∴,
∴當(dāng)時(shí),取最大值8;
∴,
∴點(diǎn)P的坐標(biāo)為(,).
【點(diǎn)睛】
本題考查了二次函數(shù)的綜合問題,二次函數(shù)的性質(zhì),一次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)和一次函數(shù)的性質(zhì)進(jìn)行解題,注意利用數(shù)形結(jié)合的思想進(jìn)行解題.
【典例3】如圖,已知拋物線與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)過點(diǎn)A作AP∥CB交拋物線于
6、點(diǎn)P,求四邊形ACBP的面積;
(3)在軸上方的拋物線上是否存在一點(diǎn)M,過M作MG軸于點(diǎn)G,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與PCA相似.若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);否則,請(qǐng)說明理由.
【解析】解:(1)令,得 解得
令,得
∴ A B C
(2)∵OA=OB=OC= ∴BAC=ACO=BCO=
∵AP∥CB, ∴PAB=
過點(diǎn)P作PE軸于E,則APE為等腰直角三角形
令OE=,則PE= ∴P
∵點(diǎn)P在拋物線上 ∴
G
M
C
B
y
P
A
解得,(不合題意,舍去)
∴PE=
7、
∴四邊形ACBP的面積=AB?OC+AB?PE=
(3). 假設(shè)存在
∵PAB=BAC = ∴PAAC
∵M(jìn)G軸于點(diǎn)G, ∴MGA=PAC =
在Rt△AOC中,OA=OC= ∴AC=
在Rt△PAE中,AE=PE= ∴AP=
設(shè)M點(diǎn)的橫坐標(biāo)為,則M
①點(diǎn)M在軸左側(cè)時(shí),則
(ⅰ) 當(dāng)AMG PCA時(shí),有=
∵AG=,MG=即 解得(舍去) (舍去)(ⅱ) 當(dāng)MAG PCA時(shí)有=
即
解得:(舍去)
∴M
G
M
C
B
y
P
A
② 點(diǎn)M在軸右側(cè)時(shí),則
(ⅰ) 當(dāng)AMG PCA時(shí)有=
∵AG=,
8、MG=
∴
解得(舍去)
∴M
(ⅱ) 當(dāng)MAGPCA時(shí)有=
即
解得:(舍去)
∴M
∴存在點(diǎn)M,使以A、M、G三點(diǎn)為頂點(diǎn)的三角形與PCA相似
M點(diǎn)的坐標(biāo)為,,…………………………………13分
【典例4】如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,拋物線經(jīng)過A,B兩點(diǎn),拋物線的頂點(diǎn)為D.
(1)求b,c的值;
(2)點(diǎn)E是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(點(diǎn)A、B除外),過點(diǎn)E作x軸的垂線交拋物線于點(diǎn)F,當(dāng)線段EF的長度最大時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的
9、條件下:①求以點(diǎn)E、B、F、D為頂點(diǎn)的四邊形的面積;②在拋物線上是否存在一點(diǎn)P,使△EFP是以EF為直角邊的直角三角形? 若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,說明理由.
【解析】解:(1)由已知得:A(-1,0) B(4,5)…………………1分
∵二次函數(shù)的圖像經(jīng)過點(diǎn)A(-1,0)B(4,5)
∴…………………………………………………2分
解得:b=-2 c=-3…………………………………………………3分
(2)如26題圖:∵直線AB經(jīng)過點(diǎn)A(-1,0) B(4,5)
∴直線AB的解析式為:y=x+1……………………………………4分
∵二次函數(shù)
∴設(shè)
10、點(diǎn)E(t, t+1),則F(t,)………………………5分
∴EF= ………………………………………6分
=
∴當(dāng)時(shí),EF的最大值=
∴點(diǎn)E的坐標(biāo)為(,)………………………………7分
(3)①如26題圖:順次連接點(diǎn)E、B、F、D得四邊形EBFD.
可求出點(diǎn)F的坐標(biāo)(,),點(diǎn)D的坐標(biāo)為(1,-4)
S = S + S
=
= ………………………………………………10分
②如備用圖:ⅰ)過點(diǎn)E作a⊥EF交拋物線于點(diǎn)P,設(shè)點(diǎn)P(m,)
則有: 解得:,
∴,
ⅱ)過點(diǎn)F作b⊥EF交拋物線于,設(shè)(n,)
11、則有: 解得: ,(與點(diǎn)F重合,舍去)
∴
綜上所述:所有點(diǎn)P的坐標(biāo):,(. 能使△EFP組成以EF為直角邊的直角三角形.
【典例5】如圖,已知二次函數(shù)的圖象與軸交于A、B兩點(diǎn),與軸交于點(diǎn)P,頂點(diǎn)為C(1,-2).
(1)求此函數(shù)的關(guān)系式;
(2)作點(diǎn)C關(guān)于軸的對(duì)稱點(diǎn)D,順次連接A、C、B、D.若在拋物線上存在點(diǎn)E,使直線PE將四邊形ABCD分成面積相等的兩個(gè)四邊形,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在一點(diǎn)F,使得△PEF是以P為直角頂點(diǎn)的直角三角形?若存在,求出點(diǎn)F的坐標(biāo)及△PEF的面積;若不存在,請(qǐng)說明理由.
【解析】(1)∵的頂點(diǎn)為C(1,-2)
12、,
∴,.
(2)設(shè)直線PE對(duì)應(yīng)的函數(shù)關(guān)系式為
由題意,四邊形ACBD是菱形.
故直線PE必過菱形ACBD的對(duì)稱中心M.
由P(0,-1),M(1,0),得.從而,
設(shè)E(,),代入,得.
解之得,,根據(jù)題意,得點(diǎn)E(3,2)
(3) 假設(shè)存在這樣的點(diǎn)F,可設(shè)F(,).
過點(diǎn)F作FG⊥軸,垂足為點(diǎn)G.
在Rt△POM和Rt△FGP中,∵∠OMP+∠OPM=90,∠FPG+∠OPM=90,
∴∠OMP=∠FPG,又∠POM=∠PGF,∴△POM∽△FGP.
∴.又OM=1,OP=1,∴GP=GF,即.
解得,,根據(jù)題意,得F(1,-2).
13、
故點(diǎn)F(1,-2)即為所求. .
【典例6】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為Q,且與軸交于點(diǎn)C,與軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線上一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過點(diǎn)P作PD∥軸,交AC于點(diǎn)D.
(1)求該拋物線的函數(shù)關(guān)系式;(2)當(dāng)△ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在問題(2)的結(jié)論下,若點(diǎn)E在軸上,點(diǎn)F在拋物線上,問是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
【解析】解:(1)∵拋物線的頂點(diǎn)為Q(2,-1)∴設(shè)
將C(0,3)代入
14、上式,得
∴, 即…(3分)
(2)分兩種情況:
①當(dāng)點(diǎn)P1為直角頂點(diǎn)時(shí),點(diǎn)P1與點(diǎn)B重合(如圖)
令=0, 得
解之得,
∵點(diǎn)A在點(diǎn)B的右邊, ∴B(1,0), A(3,0)∴P1(1,0) (5分)
②解:當(dāng)點(diǎn)A為△APD2的直角頂點(diǎn)是(如圖)
∵OA=OC, ∠AOC=, ∴∠OAD2=
當(dāng)∠D2AP2=時(shí), ∠OAP2=, ∴AO平分∠D2AP2
又∵P2D2∥軸, ∴P2D2⊥AO, ∴P2、D2關(guān)于軸對(duì)稱
設(shè)直線AC的函數(shù)關(guān)系式為
將A(3,0), C(0,3)代入上式得
, ∴∴……………(7分)
∵D2在上, P2在上,
∴設(shè)D2(,), P2(,)∴()+()=0
, ∴, (舍)∴當(dāng)=2時(shí), ==-1 ∴P2的坐標(biāo)為P2(2,-1)(即為拋物線頂點(diǎn))
∴P點(diǎn)坐標(biāo)為P1(1,0), P2(2,-1)
(3)解: 由題(2)知,當(dāng)點(diǎn)P的坐標(biāo)為P1(1,0)時(shí),不能構(gòu)成平行四邊形當(dāng)點(diǎn)P的坐標(biāo)為P2(2,-1)(即頂點(diǎn)Q)時(shí),
平移直線AP(如圖)交軸于點(diǎn)E,交拋物線于點(diǎn)F.
當(dāng)AP=FE時(shí),四邊形PAFE是平行四邊形
∵P(2,-1), ∴可令F(,1)∴
解之得: , ∴F點(diǎn)有兩點(diǎn),
即F1(,1), F2(,1)
初中數(shù)學(xué)中考備課必備