《中考(數(shù)學(xué))分類(lèi)六 與圓有關(guān)的探究題(無(wú)答案)-歷年真題???、重難點(diǎn)題型講練》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考(數(shù)學(xué))分類(lèi)六 與圓有關(guān)的探究題(無(wú)答案)-歷年真題常考、重難點(diǎn)題型講練(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、數(shù)學(xué)專(zhuān)題 精心整理
類(lèi)型六 與圓有關(guān)的探究題
【典例1】定義:三角形一個(gè)內(nèi)角的平分線和與另一個(gè)內(nèi)角相鄰的外角平分線相交所成的銳角稱(chēng)為該三角形第三個(gè)內(nèi)角的遙望角.
(1)如圖1,∠E是△ABC中∠A的遙望角,若∠A=α,請(qǐng)用含α的代數(shù)式表示∠E.
(2)如圖2,四邊形ABCD內(nèi)接于⊙O,=,四邊形ABCD的外角平分線DF交⊙O于點(diǎn)F,連結(jié)BF并延長(zhǎng)交CD的延長(zhǎng)線于點(diǎn)E.求證:∠BEC是△ABC中∠BAC的遙望角.
(3)如圖3,在(2)的條件下,連結(jié)AE,AF,若AC是⊙O的直徑.
①求∠AED的度數(shù);
②若AB=8,CD=5,求△DEF的面積.
2、
【典例2】在平面直角坐標(biāo)系中,⊙O的半徑為1,A,B為⊙O外兩點(diǎn),AB=1.給出如下定義:平移線段AB,得到⊙O的弦(分別為點(diǎn)A,B的對(duì)應(yīng)點(diǎn)),線段長(zhǎng)度的最小值稱(chēng)為線段AB到⊙O的“平移距離”.
(1)如圖,平移線段AB到⊙O的長(zhǎng)度為1的弦和,則這兩條弦的位置關(guān)系是 ;在點(diǎn)中,連接點(diǎn)A與點(diǎn) 的線段的長(zhǎng)度等于線段AB到⊙O的“平移距離”;
(2)若點(diǎn)A,B都在直線上,記線段AB到⊙O的“平移距離”為,求的最小值;
(3)若點(diǎn)A的坐標(biāo)為,記線段AB到⊙O的“平移距離”為,直接寫(xiě)出的取值范圍.
3、【典例3】.如圖所示,在Rt△ABC中,∠C=90,∠BAC=60,AB=8.半徑為的⊙M與射線BA相切,切點(diǎn)為N,且AN=3.將Rt△ABC順時(shí)針旋轉(zhuǎn)120后得到Rt△ADE,點(diǎn)B,C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)D,E.
(1)畫(huà)出旋轉(zhuǎn)后的Rt△ADE;
(2)求出Rt△ADE 的直角邊DE被⊙M截得的弦PQ的長(zhǎng)度;
(3)判斷Rt△ADE的斜邊AD所在的直線與⊙M的位置關(guān)系,并說(shuō)明理由.
【典例4】(1)已知:如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),
求證:PA=PB+PC;
(
4、2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),
求證:;
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,并給予證明.
【典例5】(1)如圖①,M、N分別是⊙O的內(nèi)接正△ABC的邊AB、BC上的點(diǎn)且BM=CN,連接OM、ON,
求∠MON的度數(shù);
(2)圖②、③、…④中,M、N分別是⊙O的內(nèi)接正方形ABCD、正五邊ABCDE、…
正n邊形ABCDEFG…的邊AB、BC上的點(diǎn),且BM=CN,連接OM、ON,則
5、圖②中∠MON的度數(shù)是 ,圖③中∠MON的度數(shù)是 ;…由此可猜測(cè)在n邊形圖中∠MON的度數(shù)是 ;
(3)若3≤n≤8,各自有一個(gè)正多邊形,則從中任取2個(gè)圖形,恰好都是中心對(duì)稱(chēng)圖形的概率是 .
【典例6】如圖,已知⊙O的直徑AB=2,直線m與⊙ O相切于點(diǎn)A,P為⊙ O上一動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),PO的延長(zhǎng)線與⊙ O相交于點(diǎn)C,過(guò)點(diǎn)C的切線與直線m相交于點(diǎn)D.
(1)求證:△APC∽△COD.
(2)設(shè)AP=x,OD=y(tǒng),試用含x的代數(shù)式表示y.
(3)試探索x為何值時(shí), △ACD是一個(gè)等邊三角形.
【典例7】 如圖①,半圓O的直徑AB=6,AM和BN是它的兩條切線,CP與半圓O相切于點(diǎn)P,并于AM,BN分別相交于C,D兩點(diǎn).
(1)請(qǐng)直接寫(xiě)出∠COD的度數(shù);
(2)求AC?BD的值;
(3)如圖②,連接OP并延長(zhǎng)交AM于點(diǎn)Q,連接DQ,試判斷△PQD能否與△ACO相似?若能相似,請(qǐng)求AC:BD的值;若不能相似,請(qǐng)說(shuō)明理由.
初中數(shù)學(xué)中考備課必備