人教版 高中數(shù)學(xué) 選修23 導(dǎo)學(xué)案2.3離散型隨機(jī)變量的均值與方差
《人教版 高中數(shù)學(xué) 選修23 導(dǎo)學(xué)案2.3離散型隨機(jī)變量的均值與方差》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版 高中數(shù)學(xué) 選修23 導(dǎo)學(xué)案2.3離散型隨機(jī)變量的均值與方差(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2019學(xué)年人教版高中數(shù)學(xué)選修精品資料 23離散型隨機(jī)變量的均值與方差 2.3.1離散型隨機(jī)變量的期望 課前預(yù)習(xí)學(xué)案 一、預(yù)習(xí)目標(biāo) 1.了解離散型隨機(jī)變量的期望定義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出期望. 2.理解公式“E(aξ+b)=aEξ+b”,熟記若ξ~Β(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的離散型隨機(jī)變量的期望 二、預(yù)習(xí)內(nèi)容 1.數(shù)學(xué)期望: 一般地,若離散型隨機(jī)變量ξ的概率分布為 ξ x1 x2 … xn … P p1 p2 … pn … 則稱 _________________ 為ξ的數(shù)學(xué)期望,簡(jiǎn)稱______________
2、_. 2. 數(shù)學(xué)期望是離散型隨機(jī)變量的一個(gè)特征數(shù),它反映了____________ 3. 平均數(shù)、均值:一般地,在有限取值離散型隨機(jī)變量ξ的概率分布中,令…,則有…,,所以ξ的數(shù)學(xué)期望又稱為____________ 4. 期望的一個(gè)性質(zhì):若(a、b是常數(shù)),ξ是隨機(jī)變量,則η也是隨機(jī)變量,它們的分布列為 ξ x1 x2 … xn … η … … P p1 p2 … pn … ____________ 5.若ξ~Β(n,p),則Eξ=____________ 課內(nèi)探究學(xué)案 學(xué)習(xí)目標(biāo): 1了解離散型隨機(jī)變量的期望的意義,會(huì)根據(jù)離散型
3、隨機(jī)變量的分布列求出期望. ⒉理解公式“E(aξ+b)=aEξ+b”,以及“若ξ~Β(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的離散型隨機(jī)變量的期望 學(xué)習(xí)重點(diǎn):離散型隨機(jī)變量的期望的概念 學(xué)習(xí)難點(diǎn):根據(jù)離散型隨機(jī)變量的分布列求出期望 學(xué)習(xí)過程: 一、復(fù)習(xí)引入: 1.隨機(jī)變量:如果隨機(jī)試驗(yàn)的結(jié)果_________________,那么這樣的變量叫做隨機(jī)變量 隨機(jī)變量常用_________________等表示 2. 離散型隨機(jī)變量:對(duì)于隨機(jī)變量可能取的值,可以_________________,這樣的隨機(jī)變量叫做離散型隨機(jī)變量 3.連續(xù)型隨機(jī)變量: 對(duì)于隨機(jī)變量可能取的值
4、,可以________________,這樣的變量就叫做連續(xù)型隨機(jī)變量 4.離散型隨機(jī)變量與連續(xù)型隨機(jī)變量的區(qū)別與聯(lián)系: 離散型隨機(jī)變量與連續(xù)型隨機(jī)變量都是________________;但是離散型隨機(jī)變量的結(jié)果可以按________________,而連續(xù)性隨機(jī)變量的結(jié)果________________ 若是隨機(jī)變量,是常數(shù),則也是隨機(jī)變量 并且不改變其屬性(離散型、連續(xù)型) 5. 分布列:設(shè)離散型隨機(jī)變量ξ可能取得值為x1,x2,…,x3,…, ξ取每一個(gè)值xi(i=1,2,…)的概率為,則稱表 ξ x1 x2 … xi … P P1 P2 … Pi …
5、 為隨機(jī)變量ξ的概率分布,簡(jiǎn)稱ξ的分布列 6. 分布列的兩個(gè)性質(zhì): ⑴_(tái)______________; ⑵________________. 7.離散型隨機(jī)變量的二項(xiàng)分布:在一次隨機(jī)試驗(yàn)中,某事件可能發(fā)生也可能不發(fā)生,在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件發(fā)生的次數(shù)ξ是一個(gè)隨機(jī)變量.如果在一次試驗(yàn)中某事件發(fā)生的概率是P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生k次的概率是 ________________,(k=0,1,2,…,n,). 于是得到隨機(jī)變量ξ的概率分布如下: ξ 0 1 … k … n P … … 稱這樣的隨機(jī)變量ξ服從__________
6、______,記作ξ~B(n,p),其中n,p為參數(shù),并記 合作探究一:期望定義 某商場(chǎng)要將單價(jià)分別為18,24,36的3種糖果按3:2:1的比例混合銷售,,如何對(duì)混合糖果定價(jià)才合理? 1上述問題如何解決?為什么 2如果混合糖果中每顆糖果的質(zhì)量都相等,你能解釋權(quán)數(shù)的實(shí)際含義嗎? 二.概念形成 一般地,若離散型隨機(jī)變量的概率分布為 … … … … 則稱____________為的數(shù)學(xué)期望或均值,數(shù)學(xué)期望又簡(jiǎn)稱為____________ 合作探究二:你能用文字語言描述期望公式嗎? E=++…++…
7、 即:________________________ 即學(xué)即練: 練習(xí)1:離散型隨機(jī)變量的概率分布 1 100 P 0.01 0.99 求的期望。 練習(xí)2:隨機(jī)拋擲一個(gè)骰子,求所得骰子的點(diǎn)數(shù)的期望。 練習(xí)3.籃球運(yùn)動(dòng)員在比賽中每次罰球命中得1分,罰不中得0分,已知他命中的概率為0.7,求他罰球一次得分的期望 合作探究三:若(a、b是常數(shù)),ξ是隨機(jī)變量,則η也是隨機(jī)變量,你能求出 ____________嗎? 即學(xué)即練:1、隨機(jī)變量ξ的分布列是 ξ 1 3 5 P 0.5 0.3 0.2 (1)則Eξ= ____________
8、 (2)若η=2ξ+1,則Eη=____________ 熟記若ξ~Β(n,p),則Eξ=np 例1 一次英語單元測(cè)驗(yàn)由20個(gè)選擇題構(gòu)成,每個(gè)選擇題有4個(gè)選項(xiàng),其中有且僅有一個(gè)選項(xiàng)是正確答案,每題選擇正確答案得5分,不作出選擇或選錯(cuò)不得分,滿分100分 學(xué)生甲選對(duì)任一題的概率為0.9,學(xué)生乙則在測(cè)驗(yàn)中對(duì)每題都從4個(gè)選擇中隨機(jī)地選擇一個(gè),求學(xué)生甲和乙在這次英語單元測(cè)驗(yàn)中的成績(jī)的期望 解析:甲乙兩生答對(duì)的題目數(shù)這個(gè)隨機(jī)變量是20次實(shí)驗(yàn)中“答對(duì)”這個(gè)事件發(fā)生的次數(shù)k,服從二項(xiàng)分布。 解: 點(diǎn)評(píng):分?jǐn)?shù)與答對(duì)個(gè)數(shù)之間呈一次函數(shù)關(guān)系,故應(yīng)用到“E(aξ+b)=aEξ
9、+b”,這個(gè)公式。 思考:學(xué)生甲在這次測(cè)試中的成績(jī)一定會(huì)是90分嗎?他的均值為90分的含義是什么? 即學(xué)即練:在數(shù)字傳輸通道中,發(fā)生一個(gè)錯(cuò)誤的概率是0.2(p),當(dāng)然,每次傳輸試驗(yàn)獨(dú)立。 令 X 為在每10位傳輸中(n)發(fā)生錯(cuò)誤的位數(shù),求 X的數(shù)學(xué)期望。 例2見課本例三 即學(xué)即練:統(tǒng)計(jì)資料表明,每年端午節(jié)商場(chǎng)內(nèi)促銷活動(dòng)可獲利2萬元;商場(chǎng)外促銷活動(dòng)如不遇下雨可獲利10萬元;如遇下雨可則損失4萬元。6月19日氣象預(yù)報(bào)端午節(jié)下雨的概率為40%,商場(chǎng)應(yīng)選擇哪種促銷方式? 四、課堂練習(xí): 1. 口袋中有5只球,編號(hào)為1,2,3,4,5,從中任取3球,以表示取出球的最大號(hào)碼,則(
10、 ) A.4; B.5; C.4.5; D.4.75 2. 籃球運(yùn)動(dòng)員在比賽中每次罰球命中的1分,罰不中得0分.已知某運(yùn)動(dòng)員罰球命中的概率為0.7,求⑴他罰球1次的得分ξ的數(shù)學(xué)期望;⑵他罰球2次的得分η的數(shù)學(xué)期望; ⑶他罰球3次的得分ξ的數(shù)學(xué)期望. 歸納總結(jié) :⑴求離散型隨機(jī)變量ξ的方差、標(biāo)準(zhǔn)差的步驟:①理解ξ的意義,寫出ξ可能取的全部值;②求ξ取各個(gè)值的概率,寫出分布列;③根據(jù)分布列,由期望的定義求出Eξ;若ξ~B(n,p),則不必寫出分布列,直接用公式計(jì)算即可. 課后練習(xí)與提高 1.若隨機(jī)變量X的分布列如下表,則EX等于:( ) X 0 1 2 3
11、 4 5 P 2x 3x 7x 2x 3x x A.1/18 B.1/9 C.20/9 D.9/20 2.隨機(jī)變量X的分布列為 X 1 2 4 P 0.4 0.3 0.3 3.兩封信隨機(jī)投入A、B、C三個(gè)空郵箱,則A郵箱的信件數(shù)X的數(shù)學(xué)期望EX=_________. 4.在一次語文測(cè)試中,有道把我國(guó)四大文學(xué)名著《水滸傳》、《三國(guó)演義》、《西游記》、《紅樓夢(mèng)》與它們的作者連線的題目,每連對(duì)一個(gè)得3分,連錯(cuò)不得分,一位同學(xué)該題的X分。(1)求該同學(xué)得分不少于6分的概率;(2)求X的分布列及數(shù)學(xué)期望。 2.3.2離
12、散型隨機(jī)變量的方差 課前預(yù)習(xí)學(xué)案 一、預(yù)習(xí)目標(biāo) 了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差. 2.了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會(huì)應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差 二、預(yù)習(xí)內(nèi)容 1、 對(duì)于離散型隨機(jī)變量ξ,如果它所有可能取的值,是,,…,,…,且取這些值的概率分別是,,…,,…,那么, _________________ 稱為隨機(jī)變量ξ的均方差,簡(jiǎn)稱為方差,式中的是隨機(jī)變量ξ的期望. 2、標(biāo)準(zhǔn)差: _________________叫做隨機(jī)變量ξ的標(biāo)準(zhǔn)差,記作____
13、_____________. 注:方差與標(biāo)準(zhǔn)差都是反映_________________它們的值越小,則_________________小,即越集中于均值。 課內(nèi)探究學(xué)案 一、學(xué)習(xí)目標(biāo) 1了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差. 2.了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會(huì)應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差 學(xué)習(xí)重難點(diǎn):離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差;比較兩個(gè)隨機(jī)變量的期望與方差的大小,從而解決實(shí)際問題 二、學(xué)習(xí)過程 問題探究: 已知甲、乙兩名射手在同一條件下射擊,所得
14、環(huán)數(shù)x1、x2的分布列如下 x1 8 9 10 P 0.2 0.6 0.2 x2 8 9 10 P 0.4 0.2 0.4 試比較兩名射手的射擊水平. . 合作探究一:方差的概念 顯然兩名選手的水平是不同的,這里要進(jìn)一步去分析他們的成績(jī)的穩(wěn)定性.樣本方差的公式及作用是什么,你能類比這個(gè)概念得出隨機(jī)變量的方差嗎? 對(duì)于離散型隨機(jī)變量ξ,如果它所有可能取的值,是,,…,,…,且取這些值的概率分別是,,…,,…,那么, _________________稱為隨機(jī)變量ξ的均方差,簡(jiǎn)稱為方差,式中的是隨機(jī)變量ξ的期望. 標(biāo)準(zhǔn)差:
15、_________________做隨機(jī)變量ξ的標(biāo)準(zhǔn)差,記作_________________ 注:方差與標(biāo)準(zhǔn)差都是反映_________________它們的值越小,則_________________小。 即學(xué)即練: 1.隨機(jī)拋擲一枚質(zhì)地均勻的骰子,求向上一面的點(diǎn)數(shù)X的均值,方差和標(biāo)準(zhǔn)差。 2.若隨機(jī)變量x滿足P(x=c)=1,其中c為常數(shù),求Ex和Dx. 3.剛才問題再思考:其他對(duì)手的射擊成績(jī)都在8環(huán)左右,應(yīng)派哪一名選手參賽?,如果其他對(duì)手的射
16、擊成績(jī)都在9環(huán)左右,應(yīng)派哪一名選手參賽? 熟記結(jié)論:.方差的性質(zhì) (1);(2); (3)若ξ~B(n,p),則np(1-p) (4)若ξ服從兩點(diǎn)分布,則p(1-p) ( 即學(xué)即練:已知x~B(100,0.5),則Ex=___,Dx=____,sx=___. E(2x-1)=____, D(2x-1)=____, s(2x-1)=_____ 例2:有甲乙兩個(gè)單位都愿意聘用你,而你能獲得如下信息: 乙單位不同職位月工資X2/元 1000 1400 1800 2200 獲得相應(yīng)職位的概率P2 0.4 0.3 0.2 0.1 甲單位不
17、同職位月工資X1/元 1200 1400 1600 1800 獲得相應(yīng)職位的概率P1 0.4 0.3 0.2 0.1 根據(jù)工資待遇的差異情況,你愿意選擇哪家單位? 解析;先求期望,看期望是否相等,在兩個(gè)單位工資的數(shù)學(xué)期望相等的情況下,再算方差,,如果認(rèn)為自己能力很強(qiáng),應(yīng)選擇工資方差大的單位,;如果認(rèn)為自己能力不強(qiáng),就應(yīng)選擇工資方差小的單位. 歸納總結(jié):⑴隨機(jī)變量ξ的方差的定義與一組數(shù)據(jù)的方差的定義式是相同的; ⑵隨機(jī)變量ξ的方差、標(biāo)準(zhǔn)差也是隨機(jī)變量ξ的特征數(shù),它們都反映了隨機(jī)變量取值的穩(wěn)定與波動(dòng)、集中與離散的程度; ⑶標(biāo)準(zhǔn)差與隨機(jī)
18、變量本身有相同的單位,所以在實(shí)際問題中應(yīng)用更廣泛 (4)求離散型隨機(jī)變量ξ的方差、標(biāo)準(zhǔn)差的步驟:①理解ξ的意義,寫出ξ可能取的全部值;②求ξ取各個(gè)值的概率,寫出分布列;③根據(jù)分布列,由期望的定義求出Eξ;④根據(jù)方差、標(biāo)準(zhǔn)差的定義求出、.若ξ~B(n,p),則不必寫出分布列,直接用公式計(jì)算即可. (5)對(duì)于兩個(gè)隨機(jī)變量和,在和相等或很接近時(shí),比較和 ,可以確定哪個(gè)隨機(jī)變量的性質(zhì)更適合生產(chǎn)生活實(shí)際,適合人們的需要 四.課堂練習(xí) 1.已知,則的值分別是( ) A.; B.; C.; D. 2. 有一批數(shù)量很大的商品的次品率為1%,從中任意地連續(xù)取出200件商品,設(shè)其
19、中次品數(shù)為ξ,求Eξ,Dξ 3. 設(shè)事件A發(fā)生的概率為p,證明事件A在一次試驗(yàn)中發(fā)生次數(shù)ξ的方差不超過1/4 4.已知甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量和,已知和 的分布列如下:(注得分越大,水平越高) 1 2 3 p a 0.1 0.6 1 2 3 p 0.3 b 0.3 試分析甲、乙技術(shù)狀況。 課后練習(xí)與提高 1.甲、乙兩個(gè)運(yùn)動(dòng)員射擊命中環(huán)數(shù)
20、X、Y的分布列如下: 環(huán)數(shù)k 8 9 10 P(X=k) 0.3 0.2 0.5 P(Y=k) 0.2 0.4 0.4 其中射擊比較穩(wěn)定的運(yùn)動(dòng)員是( ) A.甲 B.乙 C.一樣 D.無法比較 2.設(shè)隨機(jī)變量X~B(n,p),且EX=1.6,DX=1.28,則( ) A.n=8,p=0.2 B.n=4,p=0.4 C.n=5,p=0.32 D.n=7,p=0.45 3.(2008 高考寧夏、海南卷)AB兩個(gè)投資項(xiàng)目的利潤(rùn)率分別為隨機(jī)變量X1和X2。根據(jù)市場(chǎng)分析,X1和X2的分布列分別為 X1 5% 10% P 0.8 0.2 X2 2% 8% 12% P 0.2 0.5 0.3 (1)在A、B兩個(gè)項(xiàng)目上各投資100萬元,Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤(rùn),求方差DY1和DY2; (2)將x(0≤x≤100)萬元投資A項(xiàng)目,100-x萬元投資B項(xiàng)目,f(x)表示投資A項(xiàng)目所得利潤(rùn)的方差與投資B項(xiàng)目所得利潤(rùn)的方差的和。求f(x)的最小值,并指出x為何值時(shí),f(x)取到最小值。(注:D(aX+b)=a2DX)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高考化學(xué)-一輪復(fù)習(xí)-第1章-認(rèn)識(shí)化學(xué)科學(xué)-第3節(jié)-物質(zhì)的量-氣體摩爾體積課件
- 2022年蘇教版九年級(jí)物理下《信息與-信息的傳遞》課件(公開課)
- 2022年數(shù)學(xué)八上《角平分線的性質(zhì)2》課件(新人教版)
- 耳針療法介紹
- 距離測(cè)量與直線定向
- 公司文化建設(shè)規(guī)劃實(shí)施草案課件
- 新版PEP小學(xué)英語五年級(jí)下冊(cè)第一單元英語-課件
- 532平行線的性質(zhì)
- 冠心病冠狀動(dòng)脈粥樣硬化性心臟病
- 營(yíng)養(yǎng)午餐 (2)(教育精
- 新人教道德與法制第二課青春的心弦——青春萌動(dòng)(教育精
- 單髁置換術(shù)
- 呼氣末二氧化碳分壓監(jiān)測(cè)的臨床應(yīng)用
- 第一節(jié)人類的起源和發(fā)展(教育精
- 第四章-領(lǐng)導(dǎo)行為理論-領(lǐng)導(dǎo)學(xué)教學(xué)課件