《高考數(shù)學文大一輪復習檢測:第五章 數(shù)列 課時作業(yè)33 Word版含答案》由會員分享,可在線閱讀,更多相關《高考數(shù)學文大一輪復習檢測:第五章 數(shù)列 課時作業(yè)33 Word版含答案(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時作業(yè)33 等比數(shù)列
一、選擇題
1.已知等比數(shù)列{an}中,a4=4,則a2·a6等于( )
A.4 B.8
C.16 D.32
解析:易知a2·a6=a=16.
答案:C
2.在等比數(shù)列{an}中,若a4=2,a5=5,則數(shù)列{lgan}的前8項和等于( )
A.6 B.5
C.4 D.3
解析:因為a4=2,a5=5,所以a4·a5=10,所以lga1+lga2+…+lga7+lga8=lg(a1a2·…·a8)=lg(a1a8)4=lg(a4a5)4=4lg10=4.
答案:C
3.已知
2、等比數(shù)列{an}中,a1>0,則“a1<a4”是“a3<a5”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
解析:設等比數(shù)列的公比為q.由a1<a4得a1<a1q3,因為a1>0,所以q3>1,即q>1,故a3<a5成立;由a3<a5得a1q2<a1q4,因為a1>0,所以q2>1,即q<-1或q>1,所以“a1<a4”是“a3<a5”的充分不必要條件.
答案:A
4.已知正數(shù)組成的等比數(shù)列{an},若a1·a20=10
3、0,那么a7+a14的最小值為( )
A.20 B.25
C.50 D.不存在
解析:(a7+a14)2=a+a+2a7·a14≥4a7a14=4a1a21=400,∴a7+a14≥20.
答案:A
5.已知等比數(shù)列{an}的前n項和為Sn=a·2n-1+,則a的值為( )
A.- B.
C.- D.
解析:當n≥2時,an=Sn-Sn-1=a·2n-1-a·2n-2=a·2n-2,當n=1時,a1=S1=a+,∴a+=,∴a=-.
答案:A
6.(2017·太原一模)各項均為正數(shù)的等比數(shù)列{a
4、n}的前n項和為Sn,若Sn=2,S3n=14,則S4n=( )
A.80 B.30
C.26 D.16
解析:由等比數(shù)列的性質(zhì)可知,Sn,S2n-Sn,S3n-S2n,S4n-S3n仍為等比數(shù)列,故2,S2n-2,14-S2n成等比數(shù)列,則有(S2n-2)2=2(14-S2n),∴S2n=6或S2n=-4,由于{an}的各項均為正數(shù),故S2n=6,則Sn,S2n-Sn,S3n-S2n,S4n-S3n,即2,4,8,16為等比數(shù)列,∴S4n-S3n=16,∴S4n=30,故選B.
答案:B
二、填空題
7.(必修⑤P54習題2.4A組第8題改編)在3與192中間插入兩個數(shù)
5、,使它們同這兩個數(shù)成等比數(shù)列,則這兩個數(shù)為________.
解析:設該數(shù)列的公比為q,由題意知,
192=3×q3,q3=64,所以q=4.
所以插入的兩個數(shù)分別為3×4=12,12×4=48.
答案:12,48
8.等比數(shù)列{an}滿足an>0,n∈N*,且a3·a2n-3=22n(n≥2),則當n≥1時,log2a1+log2a2+…+log2a2n-1=________.
解析:由等比數(shù)列的性質(zhì),得a3·a2n-3=a=22n,從而得an=2n,∴l(xiāng)og2a1+log2a2+…+log2a2n-1=log2[(a1a2
6、n-1)·(a2a2n-2)·…·(an-1an+1)an]=log22n(2n-1)=n(2n-1)=2n2-n.
答案:2n2-n
9.在各項均為正數(shù)的等比數(shù)列{an}中,已知a2a4=16,a6=32,記bn=an+an+1,則數(shù)列{bn}的前5項和S5為________.
解析:設數(shù)列{an}的公比為q,由a=a2a4=16得,a3=4,即a1q2=4,又a6=a1q5=32,解得a1=1,q=2,所以an=a1qn-1=2n-1,bn=an+an+1=2n-1+2n=3·2n-1,所以數(shù)列{bn}是首項為3,公比為2的等比數(shù)列,所以S5=
7、=93.
答案:93
三、解答題
10.(2016·新課標全國卷Ⅲ)已知各項都為正數(shù)的數(shù)列{an}滿足a1=1,a-(2an+1-1)an-2an+1=0.
(Ⅰ)求a2,a3;
(Ⅱ)求{an}的通項公式.
解:(Ⅰ)由題意可得a2=,a3=.
(Ⅱ)由a-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).因為{an}的各項都為正數(shù),所以=.故{an}是首項為1,公比為的等比數(shù)列,因此an=.
11.(2016·天津卷)已知{an}是等比數(shù)列,前n項和為Sn(n∈N*),且-=,S6=63.
(Ⅰ)求{an}的通項公式;
8、
(Ⅱ)若對任意的n∈N*,bn是log2an和log2an+1的等差中項,求數(shù)列{(-1)nb}的前2n項和.
解:(Ⅰ)設數(shù)列{an}的公比為q.由已知,有-=,解得q=2,或q=-1.又由S6=a1·=63,知q≠-1,所以a1·=63,得a1=1,所以an=2n-1.
(Ⅱ)由題意,得bn=(log2an+log2an+1)
=(log22n-1+log22n)=n-,即{bn}是首項為,公差為1的等差數(shù)列.
設數(shù)列{(-1)nb}的前n項和為Tn,則T2n=(-b+b)+(-b+b)+…+(-b+b)=b1+b2+b3+b4+…+b2n-1+b2n==2n
9、2.
1.數(shù)列{an}滿足:an+1=λan-1(n∈N*,λ∈R且λ≠0),若數(shù)列{an-1}是等比數(shù)列,則λ的值等于( )
A.1 B.-1
C. D.2
解析:由an+1=λan-1,得an+1-1=λan-2=λ.由于數(shù)列{an-1}是等比數(shù)列,所以=1,得λ=2.
答案:D
2.(2017·福建模擬)已知等比數(shù)列{an}的各項均為正數(shù)且公比大于1,前n項積為Tn,且a2a4=a3,則使得Tn>1的n的最小值為( )
A.4 B.5
C.6 D.7
解析:∵{an}是各項均為正數(shù)的等比數(shù)列且a2a4=a3,∴a=a3,∴a3=1
10、. 又∵q>1,∴a1<a2<1,an>1(n>3),∴Tn>Tn-1(n≥4,n∈N*),T1<1,T2=a1·a2<1,T3=a1·a2·a3=a1a2=T2<1,T4=a1a2a3a4=a1<1,T5=a1·a2·a3·a4·a5=a=1,T6=T5·a6=a6>1,故n的最小值為6,故選C.
答案:C
3.設數(shù)列{an}的前n項和為Sn,且a1=1,an+an+1=(n=1,2,3,…),則S2n+3=________.
解析:由題意,
11、得S2n+3=a1+(a2+a3)+(a4+a5)+…+(a2n+2+a2n+3)=1+++…+=.
答案:
4.(2017·湖北武漢武昌調(diào)研)設Sn為數(shù)列{an}的前n項和,Sn+=(-1)nan(n∈N*),則數(shù)列{Sn}前9項和為________.
解析:因為Sn+=(-1)nan,
所以Sn-1+=(-1)n-1an-1(n≥2).
兩式相減得Sn-Sn-1+-
=(-1)nan-(-1)n-1an-1,
即an-=(-1)nan+(-1)nan-1(n≥2),
當n為偶數(shù)時,an-=an+an-1,
即an-1=-,
此時n-1為奇數(shù),所以若n為奇數(shù),
12、
則an=-;
當n為奇數(shù)時,an-=-an-an-1,
即2an-=-an-1,
所以an-1=,此時n-1為偶數(shù),所以若n為偶數(shù),則an=.
所以數(shù)列{an}的通項公式為
an=
所以數(shù)列{Sn}的前9項和為S1+S2+S3+…+S9=9a1+8a2+7a3+6a4+…+3a7+2a8+a9=(9a1+8a2)+(7a3+6a4)+…+(3a7+2a8)+a9=-----=-=-.
答案:-
5.已知數(shù)列{an}滿足a1=5,a2=5,an+1=an+6an-1(n≥2).
(1)求證:{an+1+2an}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設3nb
13、n=n(3n-an),求|b1|+|b2|+…+|bn|.
解:(1)證明:∵an+1=an+6an-1(n≥2).∴an+1+2an=3an+6an-1=3(an+2an-1)(n≥2).
∵a1=5,a2=5,∴a2+2a1=15,
∴an+2an-1≠0(n≥2),
∴=3(n≥2).
∴數(shù)列{an+1+2an}是以15為首項,3為公比的等比數(shù)列.
(2)由(1)得an+1+2an=15×3n-1=5×3n.則an+1=-2an+5×3n,
∴an+1-3n+1=-2(an-3n).
又∵a1-3=2,∴an-3n≠0.
∴{an-3n}是
14、以2為首項,-2為公比的等比數(shù)列.
∴an-3n=2×(-2)n-1,
即an=2×(-2)n-1+3n.
(3)由(2)及3nbn=n(3n-an)可得,
3nbn=-n(an-3n)=-n[2×(-2)n-1]
=n(-2)n,
∴bn=nn,∴|bn|=nn.
設Tn=|b1|+|b2|+…+|bn|,
則Tn=+2×2+…+nn,①
①×,得Tn=2+2×3+…+(n-1)n+nn+1,②
①-②,得Tn=+2+…+n-nn+1
=2-3×n+1-nn+1
=2-(n+3)n+1
∴Tn=6-2(n+3)n.