9、
∵f(a)=|2a-1|,
f(c)=|2c-1|,
∴|2a-1|>|2c-1|,
即1-2a>2c-1,
故2a+2c<2,④成立.
又2a+2c>22a+c,
∴2a+c<1,
∴a+c<0,
∴-a>c,
∴2-a>2c,③不成立.
答案:④
三、解答題
15.設f(x)=-2x+a2x+1+b(a>0,b>0).
(1)當a=b=1時,證明:f(x)不是奇函數(shù);
(2)設f(x)是奇函數(shù),求a與b的值;
(3)求(2)中函數(shù)f(x)的值域.
(1)證明:當a=b=1時,
f(x)=-2x+12x+1+1,
f(1)=-2+122+1=-15,
10、
f(-1)=-12+12=14,
∴f(-1)≠-f(1),故f(x)不是奇函數(shù).
解:(2)當f(x)是奇函數(shù)時,有f(-x)=-f(x),
即-2-x+a2-x+1+b=--2x+a2x+1+b對任意實數(shù)x成立.
化簡整理得(2a-b)22x+(2ab-4)2x+(2a-b)=0,
這是關(guān)于x的恒等式,
2a-b=0,2ab-4=0,∴a=-1,b=-2(舍去)或a=1,b=2.
(3)f(x)=-2x+12x+1+2=-12+12x+1.
∵2x>0,∴2x+1>1,0<12x+1<1,
從而-12
11、知定義域為R的函數(shù)f(x)=-2x+b2x+1+a是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
解:(1)∵f(x)是定義域為R的奇函數(shù),
∴f(0)=0,即-1+b2+a=0,
解得b=1.
從而有f(x)=-2x+12x+1+a.
又由f(1)=-f(-1)知-2+14+a=--12+11+a,
解得a=2.
經(jīng)檢驗a=2適合題意,
∴所求a、b的值為2,1.
(2)由(1)知f(x)=-2x+12x+1+2=-12+12x+1.
由上式易知f(x)在(-∞,+∞)上為減函數(shù).
又因f(x)是奇函數(shù),
從而不等式f(t2-2t)+f(2t2-k)<0,
等價于f(t2-2t)<-f(2t2-k)=f(-2t2+k).
因f(x)是減函數(shù),
所以由上式推得t2-2t>-2t2+k.
即對一切t∈R有3t2-2t-k>0.
從而判別式Δ=4+12k<0,
解得k<-13.
故k的取值范圍為(-∞,-13).