《高中數(shù)學(xué)北師大版選修2-3同步導(dǎo)學(xué)案:第3章 章末分層突破》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)北師大版選修2-3同步導(dǎo)學(xué)案:第3章 章末分層突破(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2019年北師大版精品數(shù)學(xué)資料
章末分層突破
[自我校對(duì)]
①回歸分析
②獨(dú)立性檢驗(yàn)
③相關(guān)系數(shù)
④相互獨(dú)立事件
回歸分析
分析兩個(gè)變量線性相關(guān)的常用方法:
(1)散點(diǎn)圖法,該法主要是用來直觀地分析兩變量間是否存在相關(guān)關(guān)系.
(2)相關(guān)系數(shù)法,該法主要是從量上分析兩個(gè)變量間相互聯(lián)系的密切程度,|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越?。?
下表是一位母親給兒子作的成長記錄:
年齡/周歲
3
4
5
6
7
8
9
身高/cm
90.8
97.6
104.2
110.9
115.6
122.0
12
2、8.5
年齡/周歲
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0
(1)年齡和身高之間具有怎樣的相關(guān)關(guān)系?
(2)如果年齡(3周歲~16周歲之間)相差5歲,其身高有多大差異?
(3)如果身高相差20 cm,其年齡相差多少?
【精彩點(diǎn)撥】 本例考查對(duì)兩個(gè)變量進(jìn)行回歸分析.首先求出相關(guān)系數(shù),根據(jù)相關(guān)系數(shù)的大小判斷其是否線性相關(guān),由此展開運(yùn)算.
【規(guī)范解答】 (1)設(shè)年齡為x,身高為y,則=(3+4+…+15+16)=9.5,
=(90.8+97.6+…+167.5
3、+173.0)≈131.985 7,
x=1 491,y=252 958.2,xiyi=18 990.6,14 ≈17 554.1,
∴x-14()2=227.5,y-14()2≈9 075.05,
xiyi-14 =1 436.5,
∴r=
=≈0.999 7.
因此,年齡和身高之間具有較強(qiáng)的線性相關(guān)關(guān)系.
(2)由(1)得b==≈6.314,
a=-b=131.985 7-6.3149.5≈72,
∴x與y的線性回歸方程為y=6.314x+72.
因此,如果年齡相差5歲,那么身高相差6.3145=31.57(cm).
(3)如果身高相差20 cm,年齡相差≈3.168
4、
≈3(歲).
[再練一題]
1.某運(yùn)動(dòng)員訓(xùn)練次數(shù)與運(yùn)動(dòng)成績之間的數(shù)據(jù)關(guān)系如下:
次數(shù)x
30
33
35
37
39
44
46
50
成績y
30
34
37
39
42
46
48
51
(1)作出散點(diǎn)圖;
(2)求出回歸直線方程;
(3)計(jì)算相關(guān)系數(shù)并進(jìn)行相關(guān)性檢驗(yàn);
(4)試預(yù)測該運(yùn)動(dòng)員訓(xùn)練47次及55次的成績.
【解】 (1)作出該運(yùn)動(dòng)員訓(xùn)練次數(shù)x與成績y之間的散點(diǎn)圖,如圖所示,由散點(diǎn)圖可知,它們之間具有線性相關(guān)關(guān)系.
(2)列表計(jì)算:
次數(shù)xi
成績yi
x
y
xiyi
30
30
900
900
9
5、00
33
34
1 089
1 156
1 122
35
37
1 225
1 369
1 295
37
39
1 369
1 521
1 443
39
42
1 521
1 764
1 638
44
46
1 936
2 116
2 024
46
48
2 116
2 304
2 208
50
51
2 500
2 601
2 550
由上表可求得=39.25,=40.875,
=12 656,
=13 731,iyi=13 180,
∴b=≈1.041 5,
a=-b=-0.003 88,
∴回歸直線方程為
6、y=1.041 5x-0.003 88.
(3)計(jì)算相關(guān)系數(shù)r=0.992 7,因此運(yùn)動(dòng)員的成績和訓(xùn)練次數(shù)兩個(gè)變量有較強(qiáng)的相關(guān)關(guān)系.
(4)由上述分析可知,我們可用回歸直線方程y=1.041 5x-0.003 88作為該運(yùn)動(dòng)員成績的預(yù)報(bào)值.
將x=47和x=55分別代入該方程可得y≈49和y≈57.故預(yù)測該運(yùn)動(dòng)員訓(xùn)練47次和55次的成績分別為49和57.
獨(dú)立性檢驗(yàn)
獨(dú)立性檢驗(yàn)問題的基本步驟為:
(1)找相關(guān)數(shù)據(jù),作列聯(lián)表.
(2)求統(tǒng)計(jì)量χ2.
(3)判斷可能性,注意與臨界值做比較,得出事件有關(guān)的可信度.
考察黃煙經(jīng)過藥物處理跟發(fā)生青花病的關(guān)系,得到如下數(shù)據(jù):在試驗(yàn)的
7、470株黃煙中,經(jīng)過藥物處理的黃煙有25株發(fā)生青花病,60株沒有發(fā)生青花病;未經(jīng)過藥物處理的有185株發(fā)生青花病,200株沒有發(fā)生青花?。囃茢嘟?jīng)過藥物處理跟發(fā)生青花病是否有關(guān)系.
【精彩點(diǎn)撥】 提出假設(shè),根據(jù)22列聯(lián)表求出χ2,從而進(jìn)行判斷.
【規(guī)范解答】 由已知得到下表:
藥物處理
未經(jīng)過藥物處理
總計(jì)
青花病
25
185
210
無青花病
60
200
260
總計(jì)
85
385
470
假設(shè)經(jīng)過藥物處理跟發(fā)生青花病無關(guān).
根據(jù)22列聯(lián)表中的數(shù)據(jù),可以求得χ2=≈9.788.
因?yàn)棣?>7.879,
所以我們有99. 5%的把握認(rèn)為經(jīng)過藥物
8、處理跟發(fā)生青花病是有關(guān)系的.
[再練一題]
2.某學(xué)校高三年級(jí)有學(xué)生1 000名,經(jīng)調(diào)查研究,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為A類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為B類同學(xué)).現(xiàn)用分層抽樣方法(按A類、B類分兩層)從該年級(jí)的學(xué)生中共抽查100名同學(xué),如果以身高達(dá)165 cm作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,得到以下列聯(lián)表:
體育鍛煉與身高達(dá)標(biāo)22列聯(lián)表
身高達(dá)標(biāo)
身高不達(dá)標(biāo)
總計(jì)
積極參加體育鍛煉
40
不積極參加體育鍛煉
15
總計(jì)
100
(1)完成上表.
(2)請(qǐng)問體育鍛煉與身高達(dá)標(biāo)是否有關(guān)系(χ2值精確到
9、0.01)?
參考公式:χ2=.
【解】 (1)
身高達(dá)標(biāo)
身高不達(dá)標(biāo)
總計(jì)
積極參加體育鍛煉
40
35
75
不積極參加體育鍛煉
10
15
25
總計(jì)
50
50
100
(2)根據(jù)列聯(lián)表得
χ2=≈1.33<2.706,
所以沒有充分的理由說明體育鍛煉與身高達(dá)標(biāo)有關(guān)系.
1.(2015湖北高考)已知變量x和y滿足關(guān)系y=-0.1x+1,變量y與z正相關(guān).下列結(jié)論中正確的是( )
A.x與y正相關(guān),x與z負(fù)相關(guān)
B.x與y正相關(guān),x與z正相關(guān)
C.x與y負(fù)相關(guān),x與z負(fù)相關(guān)
D.x與y負(fù)相關(guān), x與z正相關(guān)
【解析】 因?yàn)閥=
10、-0.1x+1的斜率小于0,故x與y負(fù)相關(guān).因?yàn)閥與z正相關(guān),可設(shè)z=by+a,b>0,則z=by+a=-0.1bx+b+a,故x與z負(fù)相關(guān).
【答案】 C
2.(2015福建高考)為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬元)
8.2
8.6
10.0
11.3
11.9
支出y(萬元)
6.2
7.5
8.0
8.5
9.8
根據(jù)上表可得回歸直線方程y=bx+a,其中b=0.76,a=-b.據(jù)此估計(jì),該社區(qū)一戶年收入為15萬元家庭的年支出為( )
A.11.4萬元 B.11.8萬元
C
11、.12.0萬元 D.12.2萬元
【解析】 由題意知,==10,
==8,
∴a=8-0.7610=0.4,
∴當(dāng)x=15時(shí),y=0.7615+0.4=11.8(萬元).
【答案】 B
3.(2014湖北高考)根據(jù)如下樣本數(shù)據(jù)
x
3
4
5
6
7
8
y
4.0
2.5
-0.5
0.5
-2.0
-3.0
得到的回歸方程為=bx+a,則( )
A.a(chǎn)>0,b<0 B.a(chǎn)>0,b>0
C.a(chǎn)<0,b<0 D.a(chǎn)<0,b>0
【解析】 作出散點(diǎn)圖如下:
觀察圖象可知,回歸直線=bx+a的斜率b<0,當(dāng)x=0時(shí),=a>0.故a>0,b<0
12、.
【答案】 A
4.(2016全國卷Ⅲ)如圖31是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
注:年份代碼1~7分別對(duì)應(yīng)年份2008~2014.
圖31
(1)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):yi=9.32,tiyi=40.17,=0.55,≈2.646.
參考公式:相關(guān)系數(shù)r=,回歸方程=a+bt中斜率和截距的最小二乘估計(jì)公式分別為b=,a=-b.
【解】 (1)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得
=4,(ti-)2=28,=0.55,
(ti-)(yi-)=tiyi-yi=40.17-49.32=2.89,
∴r≈≈0.99.
因?yàn)閥與t的相關(guān)系數(shù)近似為0.99,說明y與t的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合y與t的關(guān)系.
(2)由=≈1.331及(1)得
b==≈0.103.
a=-b≈1.331-0.1034≈0.92.
所以y關(guān)于t的回歸方程為=0.92+0.10t.
將2016年對(duì)應(yīng)的t=9代入回歸方程得=0.92+0.109=1.82.
所以預(yù)測2016年我國生活垃圾無害化處理量約為1.82億噸.