影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

【備戰(zhàn)】新課標Ⅱ版高考數(shù)學分項匯編 專題10 立體幾何含解析理

上傳人:仙*** 文檔編號:42723307 上傳時間:2021-11-27 格式:DOC 頁數(shù):25 大?。?0.75MB
收藏 版權申訴 舉報 下載
【備戰(zhàn)】新課標Ⅱ版高考數(shù)學分項匯編 專題10 立體幾何含解析理_第1頁
第1頁 / 共25頁
【備戰(zhàn)】新課標Ⅱ版高考數(shù)學分項匯編 專題10 立體幾何含解析理_第2頁
第2頁 / 共25頁
【備戰(zhàn)】新課標Ⅱ版高考數(shù)學分項匯編 專題10 立體幾何含解析理_第3頁
第3頁 / 共25頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【備戰(zhàn)】新課標Ⅱ版高考數(shù)學分項匯編 專題10 立體幾何含解析理》由會員分享,可在線閱讀,更多相關《【備戰(zhàn)】新課標Ⅱ版高考數(shù)學分項匯編 專題10 立體幾何含解析理(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題10 立體幾何 一.基礎題組 1. 【2013課標全國Ⅱ,理4】已知m,n為異面直線,m⊥平面α,n⊥平面β.直線l滿足l⊥m,l⊥n,lα,lβ,則(  ). A.α∥β且l∥α B.α⊥β且l⊥β C.α與β相交,且交線垂直于l D.α與β相交,且交線平行于l 【答案】:D 2. 【2012全國,理4】已知正四棱柱ABCD-A1B1C1D1中,AB=2,,E為CC1的中點,則直線AC1與平面BED的距離為(  ) A.2 B. C. D.1 【答案】 D  由BD⊥AC,EC⊥BD知,BD⊥面EOC, ∴CM⊥BD.∴CM⊥

2、面BDE. ∴HM為直線AC1到平面BDE的距離. 又△ACC1為等腰直角三角形,∴CH=2.∴HM=1. 3. 【2011新課標,理6】在一個幾何體的三視圖中,正視圖和俯視圖如下圖所示,則相應的側(cè)視圖可以為(  ) (正視圖) (俯視圖) 【答案】D 【解析】 4. 【2006全國2,理4】過球的一條半徑的中點,作垂直于該半徑的平面,則所得截面的面積與球的表面積的比為 A.  B.  C.  D.  【答案】:A 【解析】:設球半徑為R,截面半徑為r. ()2+r2=R2,∴r2=R2.∴=.∴選A.  5. 【2

3、006全國2,理7】如圖,平面α⊥平面β,A∈α,B∈β,AB與兩平面α,β所成的角分別為和.過A,B分別作兩平面交線的垂線,垂足為A′,B′,則AB∶A′B′等于 A.2∶1 B.3∶1 C.3∶2 D.4∶3 【答案】:A 6. 【2005全國3,理4】設三棱柱ABC—A1B1C1的體積為V,P、Q分別是側(cè)棱AA1、CC1上的點,且PA=QC1,則四棱錐B—APQC的體積為( ) A. B. C. D. 【答案】C 【解析】連接,在側(cè)面平行四邊形中,∵, ∴ 四邊形APQC的面積=四邊形的面積, 記B到面

4、的距離為h,∴,, ∴, ∵,∴,∴. 7. 【2005全國2,理2】正方體中,、、分別是、、的中點.那么,正方體的過、、的截面圖形是( ) (A) 三角形 (B) 四邊形 (C) 五邊形 (D) 六邊形 【答案】D 8. 【2014新課標,理18】(本小題滿分12分) 如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點. (Ⅰ)證明:PB∥平面AEC; (Ⅱ)設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積. 【解析】(Ⅰ)證明:設O為AC與BD交點,連結(jié)OE,則由矩形ABCD知:O為BD的中

5、點,因為E是BD的中點,所以OE∥PB,因為OE面AEC,PB面AEC,所以PB∥平面AEC。 9. 【2012全國,理18】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知cos(A-C)+cosB=1,a=2c,如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,,PA=2,E是PC上的一點,PE=2EC. (1)證明:PC⊥平面BED; (2)設二面角A-PB-C為90°,求PD與平面PBC所成角的大小. 【解析】解法一:(1)證明:因為底面ABCD為菱形,所以BD⊥AC. 又PA⊥底面ABCD, 所以PC⊥BD. 設AC∩BD=F

6、,連結(jié)EF. 因為,PA=2,PE=2EC, 故,,, 從而,, 因為,∠FCE=∠PCA, 設C(,0,0),D(,b,0),其中b>0, 則P(0,0,2),E(,0,),B(,-b,0). 于是=(,0,-2),=(,b,),=(,-b,),從而,, 故PC⊥BE,PC⊥DE. 又BE∩DE=E,所以PC⊥平面BDE. 10. 【2006全國2,理19】如圖,在直三棱柱ABC—A1B1C1中,AB=BC,D,E分別為BB1, AC1的中點. (1)證明:ED為異面直線BB1與AC1的公垂線; (2)設AA1

7、=AC=AB,求二面角A1-AD-C1的大小.  【解析】解法一:(1)設O為AC中點,連結(jié)EO,BO,則EOC1C. 又C1CB1B,∴EODB,EOBD為平行四邊形,ED∥OB. ∵AB=BC,∴BO⊥AC. 又平面ABC⊥平面ACC1A1,BO面ABC, 故BO⊥平面ACC1A1, ∴ED⊥平面ACC1A1,ED⊥AC1,ED⊥CC1. ∴ED⊥BB1,ED為異面直線AC1與BB1的公垂線. 解法二:(1)如圖,建立直角坐標系O—xyz,其中原點O為AC的中點. 設A(A,0,0),B(0,b,0),B1(0,b,2c),則C(-A,0,0)

8、,C1(-A,0,2c),E(0,0,c),D(0,b,c). =(0,b,0),=(0,0,2c).·=0,∴ED⊥BB1. 又=(-2A,0,2c),·=0,∴ED⊥AC1. ∴ED是異面直線BB1與AC1的公垂線. (2)不妨設A(1,0,0),則B(0,1,0),C(-1,0,0),A1(1,0,2), =(-1,-1,0),=(-1,1,0),=(0,0,2),·=0,·=0, 即BC⊥AB,BC⊥AA1, 又AB∩AA1=A,∴BC⊥面A1AD. 又E(0,0,1),D(0,1,1),C(-1,0,0),=(-1,

9、0,-1),=(-1,0,1),=(0,1,0), ·=0,·=0,即EC⊥AE,EC⊥ED, 又AE∩ED=E,∴EC⊥面C1AD. cos〈,〉==,即得和的夾角為60°. ∴二面角A1-AD-C1為60°. 11. 【2005全國3,理18】(本小題滿分12分) 如圖,在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD. (Ⅰ)證明AB⊥平面VAD; (Ⅱ)求面VAD與面VDB所成的二面角的大?。? 【解析】:證明:方法一:(Ⅰ)證明: (Ⅱ)解:取VD的中點

10、E,連結(jié)AF,BE, ∵△VAD是正三形, ∴AE⊥VD,AE= ∵AB⊥平面VAD, ∴AB⊥AE. 又由三垂線定理知BE⊥VD. 因此,tan∠AEB= 即得所求二面角的大小為 (Ⅱ)設E為DV中點,則, 由 因此,∠AEB是所求二面角的平面角, 解得所求二面角的大小為 12. 【2015高考新課標2,理6】一個正方體被一個平面截去一部分后,剩余部分的三視圖如右圖,則截去部分體積與剩余部分體積的比值為( ) A. B. C. D. 【答案】D 【考點定位】三視圖. 二.能力題組 1. 【2

11、014新課標,理6】如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則切削掉部分的體積與原來毛坯體積的比值為( ) A. B. C. D. 【答案】C 2. 【2010全國2,理9】已知正四棱錐S—ABCD中,SA=2,那么當該棱錐的體積最大時,它的高為(  ) A.1 B. C.2 D.3 【答案】:C  ∴VS—ABCD=×a2×h= (24-2h2)×h=-h(huán)3+8h ∴V′=-2h2+

12、8,令V′=0得h=2. 當h∈(0,2)時,V單調(diào)遞增,當h∈(2,2)時,V單調(diào)遞減, ∴當h=2時,V取得最大值. 3. 【2011新課標,理15】已知矩形ABCD的頂點都在半徑為4的球O的球面上,且AB=6,BC=,則棱錐O­ABCD的體積為__________. 【答案】 【解析】 4. 【2013課標全國Ⅱ,理18】(本小題滿分12分)如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=. (1)證明:BC1∥平面A1CD; (2)求二面角D-A1C-E的正弦值. (2)由AC=CB=得,AC⊥BC

13、. 以C為坐標原點,的方向為x軸正方向,建立如圖所示的空間直角坐標系C-xyz. 5. 【2011新課標,理18】如圖,四棱錐P­ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (1)證明:PA⊥BD; (2)設PD=AD,求二面角A-PB-C的余弦值. 【解析】:(1)因為∠DAB=60°,AB=2AD,由余弦定理得. 從而BD2+AD2=AB2,故BD⊥AD. 又PD⊥底面ABCD,可得BD⊥PD. 所以BD⊥平面PAD.故PA⊥BD. 6. 【2010全國2,理19】如圖,直三棱柱AB

14、CA1B1C1中,AC=BC,AA1=AB,D為BB1的中點,E為AB1上的一點,AE=3EB1. (1)證明DE為異面直線AB1與CD的公垂線; (2)設異面直線AB1與CD的夾角為45°,求二面角A1AC1B1的大?。? 【解析】:解法一:(1)證明:連結(jié)A1B,記A1B與AB1的交點為F, 因為面AA1B1B為正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D為BB1的中點,故DE∥BF,DE⊥AB1. 作CG⊥AB,G為垂足,由AC=BC知,G為AB中點. 又由底面ABC⊥面AA1B1B,得CG⊥面AA1B1B, 連結(jié)DG,

15、則DG∥AB1,故DE⊥DG,由三垂線定理,得DE⊥CD, 所以DE為異面直線AB1與CD的公垂線. 所以二面角A1AC1B1的大小為arctan. 解法二:(1)證明:以B為坐標原點,射線BA為x軸正半軸,建立如圖所示的空間直角坐標系Bxyz, 設AB=2,則A(2,0,0),B1(0,2,0),D(0,1,0),E(,,0), 又設C(1,0,c),則=(,,0),=(2,-2,0),=(1,-1,c). 于是=0,=0, 故DE⊥B1A,DE⊥DC, 所以DE為異面直線AB1與CD的公垂線. 設平面AB1C1的法向量為n=(p,q,r),則 n·=0,n

16、·=0, 即-p+2q+r=0,2p-2q=0, 令p=,則q=,r=-1,故n=(,,-1). 所以cos〈m,n〉==. 由于〈m,n〉等于二面角A1AC1B1的平面角, 所以二面角A1AC1B1的大小為arccos. 7. 【2015高考新課標2,理9】已知A,B是球O的球面上兩點,∠AOB=90,C為該球面上的動點,若三棱錐O-ABC體積的最大值為36,則球O的表面積為( ) A.36π B.64π C.144π D.256π 【答案】C 三.拔高題組 1. 【2014新課標,理11】直三棱柱ABC-A1B1C1中,∠BCA=

17、90°,M,N分別是A1B1,A1C1的中點,BC=CA=CC1,則BM與AN所成的角的余弦值為( ) A. B. C. D. 【答案】C 【解析】以C為原點,直線CA為x軸,直線CB為y軸,直線為軸,則設CA=CB=1,則 ,,A(1,0,0),,故,,所以 ,故選C.2. 【2013課標全國Ⅱ,理7】一個四面體的頂點在空間直角坐標系O-xyz中的坐標分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),畫該四面體三視圖中的正視圖時,以zOx平面為投影面,則得到的正視圖可以為(

18、  ). 【答案】:A 3. 【2010全國2,理11】與正方體ABCD—A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點(  ) A.有且只有1個 B.有且只有2個 C.有且只有3個 D.有無數(shù)個 【答案】:D  【解析】經(jīng)驗證線段B1D上的點B,D,中點,四等分點均滿足題意,故由排除法知應有無數(shù)個點. 4. 【2005全國2,理12】將半徑為1的4個鋼球完全裝入形狀為正四面體的容器里.這個正四面體的高的最小值為( ) (A) (B) (C) (D) 【答案】C 【解析】由題意知,底面放三個鋼球,上再落一個

19、鋼球時體積最小,于是把鋼球的球心連接,則又可得到一個棱長為2的小正四面體,則不難求出這個小正四面體的高為,且由正四面體的性質(zhì)可知:正四面體的中心到底面的距離是高的,且小正四面體的中心和正四面體容器的中心應該是重合的,∴小正四面體的中心到底面的距離是,正四面體的中心到底面的距離是(1即小鋼球的半徑),所以可知正四棱錐的高的最小值為,故選 C. 5. 【2012全國,理16】三棱柱ABC-A1B1C1中,底面邊長和側(cè)棱長都相等,∠BAA1=∠CAA1=60°,則異面直線AB1與BC1所成角的余弦值為__________. 【答案】: 6. 【2010全國2,理16】已知球O的半徑為

20、4,圓M與圓N為該球的兩個小圓,AB為圓M與圓N的公共弦,AB=4,若OM=ON=3,則兩圓圓心的距離MN=________. [答案]:3 [解析]:∵|OM|=|ON|=3, ∴圓M與圓N的半徑相等,且為=. 取AB中點C,連結(jié)MC、NC,則MC⊥AB,NC⊥AB, |MC|=|NC|==, 易知OM、CN共面且OM⊥MC,ON⊥NC, |OC|==2, sin∠OCM==, ∴|MN|=2|MC|·sin∠OCM=2×=3. 7. 【2005全國2,理20】(本小題滿分12分) 如圖,四棱錐中,底面為矩形,底面,,、分別為、的中點. (Ⅰ)

21、 求證:平面; (Ⅱ) 設,求與平面所成的角的大?。? ∴△EFP≌△EFA ∴EF⊥FA ∵PB、FA為平面PAB內(nèi)的相交直線 ∴EF⊥平面PAB 以D為坐標原點,DA的長為單位,建立如圖所示的直角坐標系。 (I)證明:設E(,0,0),其中>0,則C(2,0,0),A(0,1,0),B(2,1,0),P(0,0,1),F(xiàn)(,,)。 ,∴EF⊥PB ,∴EF⊥AB 又PB平面PAB,AB平面PAB,PB∩AB=B ∴EF⊥平面PAB 則sin=cos〈〉=,所以,所求角為arcsin 8. 【2015高考新課標2,理19】(本題滿分12分) 如圖,長方體中,,,,點,分別在,上,.過點,的平面與此長方體的面相交,交線圍成一個正方形. D D1 C1 A1 E F A B C B1 (Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由); (Ⅱ)求直線與平面所成角的正弦值. 【答案】(Ⅰ)詳見解析;(Ⅱ). 【考點定位】1、直線和平面平行的性質(zhì);2、直線和平面所成的角. 9.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!