《一輪北師大版理數(shù)學(xué)教案:第8章 第2節(jié) 兩條直線的位置關(guān)系 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《一輪北師大版理數(shù)學(xué)教案:第8章 第2節(jié) 兩條直線的位置關(guān)系 Word版含解析(8頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第二節(jié) 兩條直線的位置關(guān)系
[考綱傳真] 1.能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直.2.能用解方程組的方法求兩條相交直線的交點(diǎn)坐標(biāo).3.掌握兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式,會(huì)求兩平行直線間的距離.
1.兩條直線平行與垂直的判定
(1)兩條直線平行
①對(duì)于兩條不重合的直線l1,l2,若其斜率分別為k1,k2,則有l(wèi)1∥l2?k1=k2.
②當(dāng)直線l1,l2不重合且斜率都不存在時(shí),l1∥l2.
(2)兩條直線垂直
①如果兩條直線l1,l2的斜率存在,設(shè)為k1,k2,則有l(wèi)1⊥l2?k1·k2=-1.
②當(dāng)其中一條直線的斜率不存在,而另一條直
2、線的斜率為0時(shí),l1⊥l2.
2.兩條直線的交點(diǎn)的求法
直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2為常數(shù)),則l1與l2的交點(diǎn)坐標(biāo)就是方程組的解.
3.距離
P1(x1,y1),P2(x2,y2)兩點(diǎn)之間的距離|P1P2|
d=
點(diǎn)P0(x0,y0)到直線l:Ax+By+C=0的距離
d=
平行線Ax+By+C1=0與Ax+By+C2=0間的距離
d=
1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”)
(1)當(dāng)直線l1和l2斜率都存在時(shí),一定有k1=k2?l1∥l2.( )
3、
(2)如果兩條直線l1與l2垂直,則它們的斜率之積一定等于-1.( )
(3)點(diǎn)P(x0,y0)到直線y=kx+b的距離為.( )
(4)已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2為常數(shù)),若直線l1⊥l2,則A1A2+B1B2=0.( )
(5)若點(diǎn)P,Q分別是兩條平行線l1,l2上的任意一點(diǎn),則P,Q兩點(diǎn)的最小距離就是兩條平行線的距離.( )
[答案] (1)× (2)× (3)× (4)√ (5)√
2.(教材改編)已知點(diǎn)(a,2)(a>0)到直線l:x-y+3=0的距
4、離為1,則a等于( )
A. B.2-
C.-1 D.+1
C [由題意得=1,即|a+1|=,
又a>0,∴a=-1.]
3.直線l:(a-2)x+(a+1)y+6=0,則直線l恒過定點(diǎn)________.
(2,-2) [直線l的方程變形為a(x+y)-2x+y+6=0,
由解得x=2,y=-2,
所以直線l恒過定點(diǎn)(2,-2).]
4.已知直線l1:ax+(3-a)y+1=0,l2:x-2y=0.若l1⊥l2,則實(shí)數(shù)a的值為________.
【導(dǎo)學(xué)號(hào):57962375】
2 [由=-2,得a=2.]
5.(20xx·唐山調(diào)研)若直線l1
5、:x+ay+6=0與l2:(a-2)x+3y+2a=0平行,則l1與l2間的距離為________.
[由l1∥l2,得a(a-2)=1×3,
∴a=3或a=-1.
但a=3時(shí),l1與l2重合,舍去,
∴a=-1,則l1:x-y+6=0,l2:x-y+=0.
故l1與l2間的距離d==.]
兩條直線的平行與垂直
(1)設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b
6、,c,則直線xsin A+ay+c=0與直線bx-ysin B+sin C=0的位置關(guān)系是( )
A.平行 B.垂直
C.重合 D.相交但不垂直
(1)A (2)B [(1)當(dāng)a=1時(shí),顯然l1∥l2,
若l1∥l2,則a(a+1)-2×1=0,
所以a=1或a=-2.
所以a=1是直線l1與直線l2平行的充分不必要條件.
(2)在△ABC中,由正弦定理=,
得·=1.
又xsin A+ay+c=0的斜率k1=-,
bx-ysin B+sin C=0的斜率k2=,
因此k1·k2=·=-1,兩條直線垂直.]
[規(guī)律方法] 1.判
7、定直線間的位置關(guān)系,要注意直線方程中字母參數(shù)取值的影響,不僅要考慮到斜率存在的一般情況,還要考慮到斜率不存在的特殊情況,同時(shí)還要注意x,y的系數(shù)不能同時(shí)為零這一隱含條件.
2.在判斷兩直線平行、垂直時(shí),也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論,可避免討論.另外當(dāng)A2B2C2≠0時(shí),比例式與,的關(guān)系容易記住,在解答選擇、填空題時(shí),有時(shí)比較方便.
[變式訓(xùn)練1] 已知過點(diǎn)A(-2,m)和點(diǎn)B(m,4)的直線為l1,直線2x+y-1=0為l2,直線x+ny+1=0為l3.若l1∥l2,l2⊥l3,則實(shí)數(shù)m+n的值為( )
A.-10 B.-2 C.0 D.8
A [∵l1∥l
8、2,∴kAB==-2,解得m=-8.
又∵l2⊥l3,∴×(-2)=-1,
解得n=-2,∴m+n=-10.]
兩直線的交點(diǎn)與距離問題
(1)直線l過點(diǎn)P(-1,2)且到點(diǎn)A(2,3)和點(diǎn)B(-4,5)的距離相等,則直線l的方程為________.
(2)過點(diǎn)P(3,0)作一直線l,使它被兩直線l1:2x-y-2=0和l2:x+y+3=0所截的線段AB以P為中點(diǎn),求此直線l的方程.
【導(dǎo)學(xué)號(hào):57962376】
(1)x+3y-5=0或x=-1 [法一:當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y-2=k(x+1),即kx-y+k+2=0.
由題意知=,
即|3
9、k-1|=|-3k-3|,∴k=-,
∴直線l的方程為y-2=-(x+1),即x+3y-5=0.
當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=-1,也符合題意.
法二:當(dāng)AB∥l時(shí),有k=kAB=-,直線l的方程為
y-2=-(x+1),即x+3y-5=0.
當(dāng)l過AB中點(diǎn)時(shí),AB的中點(diǎn)為(-1,4),
∴直線l的方程為x=-1.
故所求直線l的方程為x+3y-5=0或x=-1.]
(2)設(shè)直線l與l1的交點(diǎn)為A(x0,y0),則直線l與l2的交點(diǎn)B(6-x0,-y0), 2分
由題意知解得 6分
即A,從而直線l的斜率k==8, 10分
直線l的方程為y=8(x-3),即
10、8x-y-24=0. 12分
[規(guī)律方法] 1.求過兩直線交點(diǎn)的直線方程,先解方程組求出兩直線的交點(diǎn)坐標(biāo),再結(jié)合其他條件寫出直線方程;也可利用過交點(diǎn)的直線系方程,再求參數(shù).
2.利用距離公式應(yīng)注意:①點(diǎn)P(x0,y0)到直線x=a的距離d=|x0-a|,到直線y=b的距離d=|y0-b|;②兩平行線間的距離公式要把兩直線方程中x,y的系數(shù)化為相等.
[變式訓(xùn)練2] 若直線l過點(diǎn)A(1,-1)與已知直線l1:2x+y-6=0相交于B點(diǎn),且|AB|=5,求直線l的方程.
[解] ①過點(diǎn)A(1,-1)與y軸平行的直線為x=1.
解方程組求得B點(diǎn)坐標(biāo)為(1,4),
此時(shí)|AB|=5,即直線
11、l的方程為x=1. 4分
②設(shè)過點(diǎn)A(1,-1)且與y軸不平行的直線為y+1=k(x-1),
解方程組
得x=且y=(k≠-2,否則l與l1平行).
則B點(diǎn)坐標(biāo)為. 8分
又A(1,-1),且|AB|=5,
所以+=52,解得k=-. 10分
因此y+1=-(x-1),即3x+4y+1=0.
綜上可知,所求直線的方程為x=1或3x+4y+1=0. 12分
對(duì)稱問題
(1)平面直角坐標(biāo)系中直線y=2x+1關(guān)于點(diǎn)(1,1)對(duì)稱的直線方程是________.
(2)光線從A(-4,-2)點(diǎn)射出,到直線y=x上的B點(diǎn)后被直線y=x反射到y(tǒng)軸上的C點(diǎn),又被y軸反射,這時(shí)反射
12、光線恰好過點(diǎn)D(-1,6),則BC所在的直線方程是________.
(1)y=2x-3 (2)10x-3y+8=0 [(1)法一:在直線l上任取一點(diǎn)P′(x,y),其關(guān)于點(diǎn)(1,1)的對(duì)稱點(diǎn)P(2-x,2-y)必在直線y=2x+1上,
∴2-y=2(2-x)+1,即2x-y-3=0.
因此,直線l的方程為y=2x-3.
法二:由題意,l與直線y=2x+1平行,設(shè)l的方程為2x-y+c=0(c≠1),則點(diǎn)(1,1)到兩平行線的距離相等,
∴=,解得c=-3.
因此所求直線l的方程為y=2x-3.
法三:在直線y=2x+1上任取兩個(gè)點(diǎn)A(0,1),B(1,3),則點(diǎn)A關(guān)于點(diǎn)(1,1
13、)對(duì)稱的點(diǎn)M(2,1),B關(guān)于點(diǎn)(1,1)對(duì)稱的點(diǎn)N(1,-1).由兩點(diǎn)式求出對(duì)稱直線MN的方程為=,即y=2x-3.
(2)作出草圖,如圖所示,設(shè)A關(guān)于直線y=x的對(duì)稱點(diǎn)為A′,D關(guān)于y軸的對(duì)稱點(diǎn)為D′,
則易得A′(-2,-4),D′(1,6).
由入射角等于反射角可得A′D′所在直線經(jīng)過點(diǎn)B與C.
故BC所在的直線方程為=,即10x-3y+8=0.]
[遷移探究1] 在題(1)中“將結(jié)論”改為“求點(diǎn)A(1,1)關(guān)于直線y=2x+1的對(duì)稱點(diǎn)”,則結(jié)果如何?
[解] 設(shè)點(diǎn)A(1,1)關(guān)于直線y=2x+1的對(duì)稱點(diǎn)為A′(a,b), 2分
則AA′的中點(diǎn)為,4分
所以解得 10
14、分
故點(diǎn)A(1,1)關(guān)于直線y=2x+1的對(duì)稱點(diǎn)為. 12分
[遷移探究2] 在題(1)中“關(guān)于點(diǎn)(1,1)對(duì)稱”改為“關(guān)于直線x-y=0對(duì)稱”,則結(jié)果如何?
[解] 在直線y=2x+1上任取兩個(gè)點(diǎn)A(0,1),B(1,3),則點(diǎn)A關(guān)于直線x-y=0的對(duì)稱點(diǎn)為M(1,0),點(diǎn)B關(guān)于直線x-y=0的對(duì)稱點(diǎn)為N(3,1), 6分
∴根據(jù)兩點(diǎn)式,得所求直線的方程為=,即x-2y-1=0. 12分
[規(guī)律方法] 1.第(1)題求解的關(guān)鍵是利用中點(diǎn)坐標(biāo)公式,將直線關(guān)于點(diǎn)的中心對(duì)稱轉(zhuǎn)化為點(diǎn)關(guān)于點(diǎn)的對(duì)稱.
2.解決軸對(duì)稱問題,一般是轉(zhuǎn)化為求對(duì)稱點(diǎn)問題,關(guān)鍵是要抓住兩點(diǎn),一是已知點(diǎn)與對(duì)稱點(diǎn)的連線與
15、對(duì)稱軸垂直;二是已知點(diǎn)與對(duì)稱點(diǎn)為端點(diǎn)的線段的中點(diǎn)在對(duì)稱軸上.
[變式訓(xùn)練3] (20xx·廣州模擬)直線x-2y+1=0關(guān)于直線x+y-2=0對(duì)稱的直線方程是( )
A.x+2y-1=0 B.2x-y-1=0
C.2x+y-3=0 D.x+2y-3=0
B [由題意得直線x-2y+1=0與直線x+y-2=0的交點(diǎn)坐標(biāo)為(1,1).
在直線x-2y+1=0上取點(diǎn)A(-1,0),
設(shè)A點(diǎn)關(guān)于直線x+y-2=0的對(duì)稱點(diǎn)為B(m,n),
則解得
故所求直線的方程為=,即2x-y-1=0.]
[思想與方法]
1.兩直線的位置關(guān)系要考慮平行、垂直和重合.對(duì)于斜率都存在且不重合的兩條直線l1,l2,l1∥l2?k1=k2;l1⊥l2?k1·k2=-1.若有一條直線的斜率不存在,那么另一條直線的斜率一定要特別注意.
2.對(duì)稱問題一般是將線與線的對(duì)稱轉(zhuǎn)化為點(diǎn)與點(diǎn)的對(duì)稱,點(diǎn)與線的對(duì)稱,利用坐標(biāo)轉(zhuǎn)移法.
[易錯(cuò)與防范]
1.判斷兩條直線的位置關(guān)系時(shí),首先應(yīng)分析直線的斜率是否存在.兩條直線都有斜率,可根據(jù)判定定理判斷,若直線無斜率時(shí),要單獨(dú)考慮.
2.(1)求點(diǎn)到直線的距離時(shí),應(yīng)先化直線方程為一般式;
(2)求兩平行線之間的距離時(shí),應(yīng)先將方程化為一般式且x,y的
系數(shù)對(duì)應(yīng)相等.