《高考數(shù)學(xué)理一輪資源庫第七章 第3講基本不等式及其應(yīng)用》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)理一輪資源庫第七章 第3講基本不等式及其應(yīng)用(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 精品資料
第3講 基本不等式及其應(yīng)用
一、填空題
1.已知x,y∈R+,且滿足+=1,則xy的最大值為________.
解析 ∵x>0,y>0且1=+≥2 ,∴xy≤3.當(dāng)且僅當(dāng)=時(shí)取等號.
答案 3
2.若實(shí)數(shù)x,y滿足x2+y2+xy=1,則x+y的最大值為________.
解析 由x2+y2+xy=1,得(x+y)2-xy=1,即xy=(x+y)2-1≤,所以(x+y)2≤1,故-≤x+y≤,當(dāng)x=y(tǒng)時(shí)“=”成立,所以x+y的最大值為.
答案
3.已知0<a<b,且a+b=1,則下列不等式:①log2a>0
2、;?、?a-b<;③2+<;④log2a+log2b<-2,其中正確的是________.
解析 由0<a<b,且a+b=1,得0<a<<b<1,所以log2a<0.易得a-b>-1,所以2a-b>,由+>2,得2+>4,由1=a+b>2(a≠b),得ab<,所以log2a+log2b=log2ab<-2,僅④正確.
答案?、?
4.在等式“1=+”兩個(gè)括號內(nèi)各填入一個(gè)正整數(shù),使它們的和最小,則填入的兩個(gè)數(shù)是________.
解析 設(shè)括號內(nèi)填入的兩個(gè)正整數(shù)為x,y,則有+=1,于是x+y=(x+y)=10++≥10+2 =16,當(dāng)且僅當(dāng)y2=9x2,即x=4,y=12時(shí)等號成立.此時(shí)x
3、+y取最小值16.故應(yīng)填4和12.
答案 4和12
5.已知函數(shù)f(x)=2x,f(a)f(b)=8,若a>0且b>0,則+的最小值為________.
解析 因?yàn)閒(a)f(b)=2a2b=2a+b=8,所以a+b=3,所以+=(a+b)=≥=3,當(dāng)且僅當(dāng)b2=4a2,即a=1,b=2時(shí)等號成立,所以+的最小值為3.
答案 3
6.已知正數(shù)x,y滿足x+2≤λ(x+y)恒成立,則實(shí)數(shù)λ的最小值為________.
解析 依題意得x+2≤x+(x+2y)=2(x+y),即≤2(當(dāng)且僅當(dāng)x=2y時(shí)取等號),即的最大值是2;又λ≥,因此有λ≥2,即λ的最小值是2.
答案 2
7
4、.已知M是△ABC內(nèi)的一點(diǎn),且=2,∠BAC=30,若△MBC,△MCA,△MAB的面積分別為,x,y,則+的最小值為________.
解析 依題意得=||||cos 30=2,則||||=4,故S△ABC=||||sin 30=1,即+x+y=1,x+y=,所以+=2(x+y)=2≥2=18,當(dāng)且僅當(dāng)=,即y=2x=時(shí),等號成立,因此+的最小值為18.
答案 18
8.已知a,b∈R,且ab=50,則|a+2b|的最小值是________.
解析 依題意得,a,b同號,于是有|a+2b|=|a|+|2b|≥2=2=2=20(當(dāng)且僅當(dāng)|a|=|2b|時(shí)取等號),因此|a+2b|
5、的最小值是20.
答案 20
9.某公司購買一批機(jī)器投入生產(chǎn),據(jù)市場分析,每臺機(jī)器生產(chǎn)的產(chǎn)品可獲得的總利潤y(單位:萬元)與機(jī)器運(yùn)轉(zhuǎn)時(shí)間x(單位:年)的關(guān)系為y=-x2+18x-25(x∈N*),則當(dāng)每臺機(jī)器運(yùn)轉(zhuǎn)________年時(shí),年平均利潤最大,最大值是________萬元.
解析 每臺機(jī)器運(yùn)轉(zhuǎn)x年的年平均利潤為=18-,而x>0,故≤18-2=8,當(dāng)且僅當(dāng)x=5時(shí)等號成立,此時(shí)年平均利潤最大,最大值為8萬元.
答案 5 8[來XXK]
10.設(shè)a,b是實(shí)數(shù),且a+b=3,則2a+2b的最小值是________.
解析 2a+2b≥2=2
=2=4
∴2a+2b≥4
6、.
答案 4
二、解答題
11.某森林出現(xiàn)火災(zāi),火勢正以每分鐘100 m2的速度順風(fēng)蔓延,消防站接到警報(bào)立即派消防隊(duì)員前去,在火災(zāi)發(fā)生后5分鐘到達(dá)救火現(xiàn)場,已知消防隊(duì)員在現(xiàn)場平均每人每分鐘滅火50 m2,所消耗的滅火材料、勞務(wù)津貼等費(fèi)用為每人每分鐘125元,另附加每次救火所耗損的車輛、器械和裝備等費(fèi)用平均每人100元,而燒毀一平方米森林損失費(fèi)為60元.
(1)設(shè)派x名消防隊(duì)員前去救火,用t分鐘將火撲滅,試建立t與x的函數(shù)關(guān)系式;
(2)問應(yīng)該派多少名消防隊(duì)員前去救火,才能使總損失最少?
(總損失=滅火材料、勞務(wù)津貼等費(fèi)用+車輛、器械和裝備費(fèi)用+森林損失費(fèi))
解 (1)t==.
7、
(2)設(shè)總損失為y,則y=滅火勞務(wù)津貼+車輛、器械和裝備費(fèi)+森林損失費(fèi).
y=125tx+100x+60(500+100t)
=125x+100x+30 000+
=1 250+100(x-2+2)+30 000+
=31 450+100(x-2)+
≥31 450+2=36 450.
當(dāng)且僅當(dāng)100(x-2)=,即x=27時(shí),y有最小值36 450.
12.已知lg(3x)+lg y=lg(x+y+1).
(1)求xy的最小值;
(2)求x+y的最小值.
解 由lg(3x)+lg y=lg(x+y+1),得
(1)∵x>0,y>0,
∴3xy=x+y+1≥2+1.
8、
∴3xy-2-1≥0.
即3()2-2-1≥0.
∴(3+1)(-1)≥0.
∴≥1.∴xy≥1.
當(dāng)且僅當(dāng)x=y(tǒng)=1時(shí),等號成立.
∴xy的最小值為1.
(2)∵x>0,y>0,
∴x+y+1=3xy≤32.
∴3(x+y)2-4(x+y)-4≥0.
∴[3(x+y)+2][(x+y)-2]≥0.
∴x+y≥2.
當(dāng)且僅當(dāng)x=y(tǒng)=1時(shí)取等號,[來源
∴x+y的最小值為2.
13.某開發(fā)商用9 000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2 000平方米.已知該寫字樓第一層的建筑費(fèi)用為每平方米4 000元,從第二層開始,每一層的建筑費(fèi)用比
9、其下面一層每平方米增加100元.
(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)
(2)要使整幢寫字樓每平方米的平均開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?
解 (1)由已知,寫字樓最下面一層的總建筑費(fèi)用為:
4 0002 000=8 000 000(元)=800(萬元),
從第二層開始,每層的建筑總費(fèi)用比其下面一層多:
1002 000=200 000(元)=20(萬元),
寫字樓從下到上各層的總建筑費(fèi)用構(gòu)成以800為首項(xiàng),20為公差的等差數(shù)列,
所以函數(shù)表達(dá)式為:
y=f(x)=800x+20+9 000
=1
10、0x2+790x+9 000(x∈N*);
(2)由(1)知寫字樓每平方米平均開發(fā)費(fèi)用為:
g(x)=10 000
=
=50≥50(2+79)
=6 950(元).
當(dāng)且僅當(dāng)x=,即x=30時(shí)等號成立.[來源:]
答:該寫字樓建為30層時(shí),每平方米平均開發(fā)費(fèi)用最低.
14.提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/時(shí).研究表明:當(dāng)20≤x≤200時(shí),車流速度v是
11、車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/時(shí))
解 (1)由題意:當(dāng)0≤x≤20時(shí),v(x)=60;當(dāng)20