《浙江版高考數(shù)學(xué) 一輪復(fù)習(xí)(講練測(cè)): 專題3.2 導(dǎo)數(shù)的運(yùn)算測(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江版高考數(shù)學(xué) 一輪復(fù)習(xí)(講練測(cè)): 專題3.2 導(dǎo)數(shù)的運(yùn)算測(cè)(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
專題3.2 導(dǎo)數(shù)的運(yùn)算
一、選擇題(本大題共12小題,每小題5分,在每小題給出的四個(gè)選擇中,只有一個(gè)是符合題目要求的.)
1. 函數(shù)的導(dǎo)數(shù)是( )
A. B. C. D.
【答案】A
2.下列求導(dǎo)數(shù)運(yùn)算錯(cuò)誤的是( )
A. B.
C. D.
【答案】C
【解析】
試題分析:.
3.已知曲線上一點(diǎn),,則過點(diǎn)P的切線的傾斜角為( )
A.30 B.45 C.135
2、 D.165
【答案】B
【解析】,所以.由導(dǎo)數(shù)的幾何意義可得在點(diǎn)處切線的斜率為1,設(shè)此切線的傾斜角為,即,因?yàn)椋?故B正確.
4.數(shù)列為等比數(shù)列,其中,,為函數(shù)的導(dǎo)函數(shù),則=( )
A、 B、 C、 D、
【答案】D
【解析】
,則;;則.
5.對(duì)于上可導(dǎo)的任意函數(shù),若滿足,則必有( )
(A) (B)
(C) (D)
【答案】C
【解析】
6.下列圖象中,有一個(gè)是函數(shù)的導(dǎo)函數(shù)的圖象,則等于( )
A. B. C.
3、D.或
【答案】B
【解析】
導(dǎo)函數(shù)的圖象開口向上.又,不是偶函數(shù),其圖象不關(guān)于軸對(duì)稱且必為第三張圖,由圖象特征知,,且對(duì)稱軸,因此故選D.
7.【20xx河南開封10月月考】已知變量a,b滿足b=-a2+3lna (a>0),若點(diǎn)Q (m,n)在直線y=2x+上, 則(a-m)2+(b-n)2的最小值為
A. 9 B. C. D. 3
:【答案】C
8.【20xx河南天一聯(lián)考(二)】曲線在處的切線與直線平行,則實(shí)數(shù)的值為( )
A. B.
4、 C. D.
【答案】A
【解析】因?yàn)?,所以,又因?yàn)榍€在處的切線與直線平行,所以,故選A.
9.【20xx吉林長(zhǎng)春監(jiān)測(cè)(一)】已知實(shí)數(shù)滿足,實(shí)數(shù)滿足,則的最小值為( )
A.1 B.2 C.3 D.4
【答案】A
【解析】因?yàn)椋瑒t,即因?yàn)椋瑒t,即. 要求取的表達(dá)式的本質(zhì)就是曲線上的點(diǎn)到直線距離的最小值. 因?yàn)?,則,有,,即過原點(diǎn)的切線方程為. 最短距離為. 故選A.
10.若曲線與曲線存在公共切線,則的取值范圍為( )
A. B. C. D
5、.
【答案】C
當(dāng) 時(shí),,函數(shù)在區(qū)間 上是減函數(shù),
當(dāng) 時(shí),,函數(shù)在區(qū)間 上是增函數(shù),
所以當(dāng)時(shí),函數(shù)在上有最小值
所以 ,故選C.
11.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則( )
A. B. C. D.
【答案】B
【解析】
∵,∴.令,得,解得,-1.故選B.
12.已知f(x)=x2+ax+b,g(x)=x2+cx+d,又f(2x+1)=4g(x),且f′(x)=g′(x),f(5)=30,則g(4)= ( )
A. B. C. D.
【答案】C
由f′
6、(x)=g′(x),得2x+a=2x+c,∴a=c.③
由f(5)=30,得25+5a+b=30.④
∴由①③可得a=c=2.
由④得b=-5,再由②得d=-
∴g(x)=x2+2x-.故g(4)=16+8-=.
2、 填空題(本大題共4小題,每小題5分,共20分.把答案填在題中的橫線上.)
13.已知函數(shù),則的值為 .
【答案】
【解析】
令,,所以,令,則,所以.
14.已知函數(shù),其導(dǎo)函數(shù)記為,則的值為______.
【答案】
【解析】
由題意得,因?yàn)?,所以,所?
,,所以.
15.設(shè)函數(shù)在內(nèi)可導(dǎo),且,且______.
【答案】
【解析】
令,則,,,.
16.已知函數(shù),則曲線在點(diǎn)處的切線方程為 .
【答案】
【解析】
由題,則,所以,即.
三、解答題 (本大題共4小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)
17.求函數(shù)的導(dǎo)數(shù)。
【答案】
【解析】
.
18.求函數(shù)的導(dǎo)數(shù)。
【答案】
19.求下列函數(shù)的導(dǎo)數(shù).
(1);
(2).
【答案】(1);(2).
【解析】
(1).
(2)因?yàn)?,所?
.
20.已知都是定義在R上的函數(shù),,,且,且,.若數(shù)列的前n項(xiàng)和大于62,求n的最小值.
【答案】6