輪式移動機(jī)器人的結(jié)構(gòu)設(shè)計
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),圖紙為CAD格式可編輯,有疑問咨詢QQ:414951605 或 1304139763p
畢業(yè)設(shè)計(論文)任務(wù)書
I、畢業(yè)設(shè)計(論文)題目:
輪式移動機(jī)器人的結(jié)構(gòu)設(shè)計
II、畢 業(yè)設(shè)計(論文)使用的原始資料(數(shù)據(jù))及設(shè)計技術(shù)要求:
以輪式機(jī)器人為研究對象,完成機(jī)器人的結(jié)構(gòu)設(shè)計,機(jī)器人的前進(jìn)、后退、
360度范圍轉(zhuǎn)動。
III、畢 業(yè)設(shè)計(論文)工作內(nèi)容及完成時間:
1、開題報告 2 周
2、總體方案設(shè)計 3 周
3、零部件的結(jié)構(gòu)設(shè)計 3 周
4、計算與強(qiáng)度校核 3 周
5、外文資料翻譯(不少于6000實詞) 1 周
6、畢業(yè)論文整理及答辯準(zhǔn)備 1 周
Ⅳ 、主 要參考資料:
[1].孫恒等主編.機(jī)械原理(第六版).高等教育出版社,2001.
[2].馬香峰主編.工業(yè)機(jī)器人的操作機(jī)設(shè)計.冶金工業(yè)出版社,1996.
[3].宗光華 張慧慧議.機(jī)器人設(shè)計與控制.科學(xué)出版社,2004.
[4].李志尊.UG NX CAD 基礎(chǔ)應(yīng)用與范例解析[M].機(jī)械工業(yè)出版,2004
[5]. Y.Fujimoto and A.Kawamura. Autonomous Control and 3D Dynamic Simulation Walking
Robot Including Environmental Force Interaction. IEEE Robotic and
Automation Magzine,1988,5(2):33-42.
42
航空工程 系 機(jī)械設(shè)計制造及自動化 專業(yè)類 0881054 班
學(xué)生(簽名):
填寫日期: 2012 年 2 月 20 日
指導(dǎo)教師(簽名):
助理指導(dǎo)教師(并指出所負(fù)責(zé)的部分):
系主任(簽名):
附注:任務(wù)書應(yīng)該附在已完成的畢業(yè)設(shè)計說明書首頁。
學(xué)士學(xué)位論文原創(chuàng)性聲明
本人聲明,所呈交的論文是本人在導(dǎo)師的指導(dǎo)下獨立完成的研究成果。除了文中特別加以標(biāo)注引用的內(nèi)容外,本論文不包含法律意義上已屬于他人的任何形式的研究成果,也不包含本人已用于其他學(xué)位申請的論文或成果。對本文的研究作出重要貢獻(xiàn)的個人和集體,均已在文中以明確方式表明。本人完全意識到本聲明的法律后果由本人承擔(dān)。
作者簽名: 日期:
學(xué)位論文版權(quán)使用授權(quán)書
本學(xué)位論文作者完全了解學(xué)校有關(guān)保留、使用學(xué)位論文的規(guī)定,同意學(xué)校保留并向國家有關(guān)部門或機(jī)構(gòu)送交論文的復(fù)印件和電子版,允許論文被查閱和借閱。本人授權(quán)南昌航空大學(xué)科技學(xué)院可以將本論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫進(jìn)行檢索,可以采用影印、縮印或掃描等復(fù)制手段保存和匯編本學(xué)位論文。
作者簽名: 日期:
導(dǎo)師簽名: 日期:
畢業(yè)設(shè)計(論文)開題報告
題目 輪式移動機(jī)器人的結(jié)構(gòu)設(shè)計
專 業(yè) 名 稱 機(jī)械設(shè)計制造及自動化
班 級 學(xué) 號 088105406
學(xué) 生 姓 名 鄧文文
指 導(dǎo) 教 師 許瑛
填 表 日 期 2012 年 3 月 10 日
南昌航空大學(xué)科技學(xué)院學(xué)士學(xué)位論文—開題報告
1、 選題的依據(jù)及意義:
輪式移動機(jī)器人具有良好的穩(wěn)定性、較快的移動能力等優(yōu)點,在足球機(jī)器人比賽等領(lǐng)域得到了廣泛的應(yīng)用。機(jī)器人的應(yīng)用越來越廣泛,幾乎滲透到所有領(lǐng)域。移動機(jī)器人是機(jī)器人學(xué)中的一個重要分支。早在60 年代,就已經(jīng)開始了關(guān)于移動機(jī)器人的研究。關(guān)于移動機(jī)器人的研究涉及許多方面,首先,要考慮移動方式,可以是輪式的、履帶式、腿式的,對于水下機(jī)器人,則是推進(jìn)器。其次,必須考慮驅(qū)動器的控制,以使機(jī)器人達(dá)到期望的行為。第三,必須考慮導(dǎo)航或路徑規(guī)劃,對于后者,有更多的方面要考慮,如傳感融合,特征提取,避碰及環(huán)境映射。因此,移動機(jī)器人是一個集環(huán)境感知、動態(tài)決策與規(guī)劃、行為控制與執(zhí)行等多種功能于一體的綜合系統(tǒng)。對移動機(jī)器人的研究,提出了許多新的或挑戰(zhàn)性的理論與工程技術(shù)課題,引起越來越多的專家學(xué)者和工程技術(shù)人員的興趣,更由于它在軍事偵察、掃雷排險、防核化污染等危險與惡劣環(huán)境以及民用中的物料搬運上具有廣闊的應(yīng)用前景,使得對它的研究在世界各國受到普遍關(guān)注。
二、國內(nèi)外研究概況及發(fā)展趨勢(含文獻(xiàn)綜述):
2.1 國外移動機(jī)器人的發(fā)展概況
2.1.1 室外幾種典型應(yīng)用移動機(jī)器人
美國國家科學(xué)委員會曾預(yù)言:“20 世紀(jì)的核心武器是坦克,21 世紀(jì)的核心武器是無人作戰(zhàn)系統(tǒng),其中2000 年以后遙控地面無人作戰(zhàn)系統(tǒng)將連續(xù)裝備部隊,并走向戰(zhàn)場”。為此,從80年代開始,美國國防高級研究計劃局(DARPA) 專門立項,制定了地面天人作戰(zhàn)平臺的戰(zhàn)略計劃。從此,在全世界掀開了全面研究室外移動機(jī)器人的序幕,如DARPA的“戰(zhàn)略計算機(jī)”計劃中的自主地面車輛(ALV) 計劃(1983 —1990) ,能源部制訂的為期10 年的機(jī)器人和智能系統(tǒng)計劃(RIPS)(1986 —1995) ,以及后來的空間機(jī)器人計劃; 日本通產(chǎn)省組織的極限環(huán)境下作業(yè)的機(jī)器人計劃;歐洲尤里卡中的機(jī)器人計劃等。
初期的研究,主要從學(xué)術(shù)角度研究室外機(jī)器人的體系結(jié)構(gòu)和信息處理,并建立實驗系統(tǒng)進(jìn)行驗證。雖然由于80年代對機(jī)器人的智能行為期望過高,導(dǎo)致室外機(jī)器人的研究未達(dá)到預(yù)期的效果,但卻帶動了相關(guān)技術(shù)的發(fā)展,為探討人類研制智能機(jī)器人的途徑積累了經(jīng)驗,同時,也推動了其它國家對移動機(jī)器人的研究與開發(fā)。進(jìn)入90年代,隨著技術(shù)的進(jìn)步,移動機(jī)器人開始在更現(xiàn)實的基礎(chǔ)上,開拓各個應(yīng)用領(lǐng)域,向?qū)嵱没M(jìn)軍(圖2-11a、b)。
(a) (b)
圖2-11 實用化機(jī)器人
由美國NASA資助研制的“丹蒂II”八足行走機(jī)器人(圖2-11c),是一個能提供對高移動性機(jī)器人運動的了解和遠(yuǎn)程機(jī)器人探險的行走機(jī)器人。它與其他機(jī)器人,如NavLab ,不同之處是它于1994年在斯珀火山的火山口中進(jìn)行了成功的演示,雖然在返回時,在一陡峭的、泥濘的路上,失去了穩(wěn)定性,倒向了一邊,但作為指定的探險任務(wù)早己完成。其它機(jī)器人(圖2-11d)在整個運動過程中,都需要人參與或支持。丹蒂計劃的主要目標(biāo)是為實現(xiàn)在充滿碎片的月球或其它星球的表面進(jìn)行探索而提供一種機(jī)器人解決方案。
(c) (d)
圖2-11 八足行走機(jī)器人
美國NASA研制的火星探測機(jī)器人索杰納(圖2-11e)1997年登上火星,這一事件向全世界進(jìn)行了報道。為了在火星上進(jìn)行長距離探險,又開始了新一代樣機(jī)的研制,命名為Rocky7(圖2-11f),并Lavic 湖的巖溶流上和干枯的湖床上進(jìn)行了成功的實驗。
(e) (f)
圖2-11 索杰納 圖2-11 Rocky7
德國研制了一種輪椅機(jī)器人(圖2-11g), 并在烏爾姆市中心車站的客流高峰期的環(huán)境和1998年漢諾威工業(yè)商品博覽會的展覽大廳環(huán)境中進(jìn)行了實地現(xiàn)場表演。該輪椅機(jī)器人在公共場所擁擠的、有大量乘客的環(huán)境中,進(jìn)行了超過36 個小時的考驗,所表現(xiàn)出的性能是其它現(xiàn)存的輪椅機(jī)器人或移動機(jī)器人所不可比的。這種輪椅機(jī)器人是在一個商業(yè)輪椅的基礎(chǔ)上實現(xiàn)的。
(g)
圖2-11 輪椅機(jī)器人
國外還研制了一種獨輪機(jī)器人(圖2-11h、i),它與具有靜態(tài)穩(wěn)定性的多輪移動機(jī)器人相比,具有很好的動態(tài)穩(wěn)定性,對姿態(tài)干擾的不敏感性,高可操作性,低的滾動阻力,跌倒的恢復(fù)能力和水陸兩用性。這是運動性的一種新概念。
(h) (i)
圖2-11 獨輪機(jī)器人
2.1.2高完整性機(jī)器人
沒有一個系統(tǒng)可以做到100%可靠。一個可靠機(jī)器人是指它一直正常地工作。一個高完整性機(jī)器人(圖2-12)則時刻監(jiān)視自己的行為,一旦發(fā)現(xiàn)異常,立即停止運轉(zhuǎn)。因此,一個高完整性機(jī)器人并不一定要連續(xù)工作,但工作時,一定是正確的。
圖2-12 高完整性機(jī)器人
2.1.3 遙控移動機(jī)器人
對機(jī)器自主性的挑戰(zhàn)來自要求完成的任務(wù)和高度非結(jié)構(gòu)化和變化的環(huán)境。在大多數(shù)室外環(huán)境中,要求機(jī)器完全自主地完成任務(wù),目前還有一定的困難。遠(yuǎn)程操作的半自主機(jī)器人,毫無疑問,是一個發(fā)展方向。因此先進(jìn)的遠(yuǎn)程操作技術(shù)是將來必需的。完全遙現(xiàn)是實現(xiàn)遠(yuǎn)程操作一個或幾個移動機(jī)器人的最佳可能方案,但太貴。研制一套適于遠(yuǎn)程操作的、使用起來既自然又容易的人機(jī)交互方案是必需的(圖2-13)。在未知和變化的環(huán)境中,頭部跟蹤系統(tǒng)有幫助,且是可行的。
圖2-13 遙控移動機(jī)器人
2.1.4 環(huán)境與移動機(jī)器人集成
H. Ishiguro 通過對以前機(jī)器人研究工作的回顧,發(fā)現(xiàn)過去智能機(jī)器人的工作主要集中在自主性上。因此,他提出了一個新概念:感知信息基礎(chǔ)設(shè)施。就象人需要道路、交通信號燈等一樣,機(jī)器人為了在一個動態(tài)變化的環(huán)境中行動,也同樣需要基礎(chǔ)設(shè)施。作者將一個用于導(dǎo)航移動機(jī)器人的分布式視覺系統(tǒng)作為例子,進(jìn)行了解釋和說明。實驗在一個縮小了1/ 12 的城鎮(zhèn)模型中進(jìn)行,內(nèi)有陰影,樹的結(jié)構(gòu),草地和房屋,足夠代表室外環(huán)境的真實情況,并安裝了用于機(jī)器人導(dǎo)航用的16 個攝像機(jī)智能體,實現(xiàn)了移動機(jī)器人與環(huán)境的融合(圖2-14a、b、c)。
(a) (b) (c)
圖2-14 集成機(jī)器人
2.2 國內(nèi)移動機(jī)器人研究概況
國內(nèi)在移動機(jī)器人的研究起步較晚,大多數(shù)研究尚處于某個單項研究階段,主要的研究工作有:
清華大學(xué)智能移動機(jī)器人(圖2-2a)于1994 年通過鑒定。涉及到五個方面的關(guān)鍵技術(shù):基于地圖的全局路徑規(guī)劃技術(shù)研究(準(zhǔn)結(jié)構(gòu)道路網(wǎng)環(huán)境下的全局路徑規(guī)劃、具有障礙物越野環(huán)境下的全局路徑規(guī)劃、自然地形環(huán)境下的全局路徑規(guī)劃) ;基于傳感器信息的局部路徑規(guī)劃技術(shù)研究(基于多種傳感器信息的“感知一動作”行為、基于環(huán)境勢場法的“感知一動作”行為、基于模糊控制的局部路徑規(guī)劃與導(dǎo)航控制) ;路徑規(guī)劃的仿真技術(shù)研究(基于地圖的全局路徑規(guī)劃系統(tǒng)的仿真模擬、室外移動機(jī)器人規(guī)劃系統(tǒng)的仿真模擬、室內(nèi)移動機(jī)器人局部路徑規(guī)劃系統(tǒng)的仿真模擬) ;傳感技術(shù)、信息融合技術(shù)研究(差分全球衛(wèi)星定位系統(tǒng)、磁羅盤和光碼盤定位系統(tǒng)、超聲測距系統(tǒng)、視覺處理技術(shù)、信息融合技術(shù)) ;智能移動機(jī)器人的設(shè)計和實現(xiàn)(智能移動機(jī)器人THMR —III 的體系結(jié)構(gòu)、高效快速的數(shù)據(jù)傳輸技術(shù)、自動駕駛)。
(a)
圖2-2 智能移動機(jī)器人
香港城市大學(xué)智能設(shè)計、自動化及制造研究中心的自動導(dǎo)航車和服務(wù)機(jī)器人(圖2-2b)。
(b)
圖2-2 自動導(dǎo)航機(jī)器人汽車
中國科學(xué)院沈陽自動化研究所的AGV(圖2-2c)和防爆機(jī)機(jī)器人(圖2-2d)。
(c) (d)
圖2-2 AGV機(jī)器人 圖2-2 防爆機(jī)機(jī)器人
中國科學(xué)院自動化所自行設(shè)計、制造的全方位移動式機(jī)器人視覺導(dǎo)航系統(tǒng)(圖2-2e)。
(e)
圖2-2 全方位移動式機(jī)器人視覺導(dǎo)航系統(tǒng)
哈爾濱工業(yè)大學(xué)于1996 年研制成功的導(dǎo)游機(jī)器人等(圖2-2f)。
(f)
圖2-2 導(dǎo)游機(jī)器人
3、 研究內(nèi)容及實驗方案:
本畢業(yè)設(shè)計課題是基于阿克曼原理的輪式移動機(jī)器人運動模型而進(jìn)行的輪式機(jī)器人的結(jié)構(gòu)設(shè)計,主要是為了實現(xiàn)前進(jìn)、后退、360°范圍轉(zhuǎn)動的輪式移動機(jī)器人。 課題主要完成輪式機(jī)器人機(jī)械方案設(shè)計,包括:驅(qū)動電機(jī)選擇、轉(zhuǎn)向電機(jī)的選擇及控制芯片的選擇;齒輪的設(shè)計計算和校核;前后減震系統(tǒng)以及轉(zhuǎn)向機(jī)構(gòu)設(shè)計和車體的一些機(jī)械結(jié)構(gòu)設(shè)計等。對輪式移動機(jī)器人的運動學(xué)特性進(jìn)行了分析,建立了不考慮滑行、剎車等的輪式移動機(jī)器人的運動學(xué)模型。
1.機(jī)械結(jié)構(gòu)部分包括機(jī)器人構(gòu)成方案選擇、機(jī)器人本體機(jī)構(gòu)設(shè)計和驅(qū)動電機(jī)的選擇
2.針對設(shè)計要求結(jié)合所選用的電機(jī),討論系統(tǒng)設(shè)計的可靠性問題
四、目標(biāo)、主要特色及工作進(jìn)度
1、通過圖書館、上網(wǎng)查找大量書籍及相關(guān)資料 2 周
2、總體機(jī)構(gòu)方案設(shè)計:運動形式、驅(qū)動形式的選擇、 3 周
驅(qū)動電機(jī)的選擇、轉(zhuǎn)向輪電機(jī)的選擇的選擇
3、機(jī)器人的運動學(xué)模型的分析 3周
4、控制系統(tǒng)的設(shè)計、機(jī)械零件設(shè)計計算 3周
5、外文資料翻譯(不少于6000實詞) 2周
6、畢業(yè)論文整理及答辯準(zhǔn)備 2周
五、參考文獻(xiàn)
【1】、孫恒等主編.機(jī)械原理(第六版).高等教育出版社,2001.
【2】、馬香峰主編.工業(yè)機(jī)器人的操作機(jī)設(shè)計.冶金工業(yè)出版社,1996.
【3】、宗光華 張慧慧議.機(jī)器人設(shè)計與控制.科學(xué)出版社,2004.
【4】、李志尊. UG NX CAD 基礎(chǔ)應(yīng)用與范例解析[M].機(jī)械工業(yè)出版.2004.
【5】、劉金琨.先進(jìn)PID控制及其MATLAB仿真[M].北京:電子工業(yè)出版社.- 2003.
【6】、蔡自興.機(jī)器人學(xué)[M].北京:清華大學(xué)出版社,2000.
【7】、張海根.機(jī)電傳動控制.高等教育出版社,2001.8:90-117
【8】、邱宣懷.機(jī)械設(shè)計(第四版).高等教育出版社,1996.10:204256,296308
【9】、Y.Fujimoto and A.Kawamura. Autonomous Control and 3D Dynamic Simulation Walking Robot Including Environmental Force Interaction. IEEE Robotic and Automation Magzine,1988,5(2):33-42.
【10】、REN Xiaodong, FENG Zuren, CHANG Hong, MU Ruofeng. Kinematics modeling and analysis for three-wheel omnidirectional mobile robot-[C]//Proceedings of
the 7th World Congress on Intelligent Control and Automation.China,2008:
2608-2613.
【11】、SIEGWART R,NOUBAKHSH I R. Introduction to autonomous mobile robot[M].MA,USA:MIT Press,2004:202-205
【12】、CHEN LEI,MA Jie,GAO Haibo.Kinematic modeling of eight-wheel lunar rover[C]//Proceeding of the 27 th Chinese Control Conference. Kunming,China,
2008:346-350.
【13】、SONG Xiaokang,TAN Dalong, WU Zhenwei, WANG Yuechao. Kinematics modeling and analyses of all-terrain wheeled mobile robot[J].Chinese Journal of Mechanical Engineering,2008,44(6):148-154.
【14】、 Jagnnathan S, Zhu S Q, Lewis F L. Path planning and control of a mobile base withnon-holonomic constraints [J]. Robotica, 1994,12:529-539
【15】、RATNER D,MCKERROW P,Dynamics of the Titan three-wheel drive Mobile robot with floating Ackerman steering [C]//Brisbane,1999:14-4-149.
10
畢業(yè)設(shè)計(論文)
題目: 輪式移動機(jī)器人的結(jié)構(gòu)設(shè)計
系 別 航空工程系
專業(yè)名稱 機(jī)械設(shè)計制造及自動化
班級學(xué)號 088105406
學(xué)生姓名 鄧文文
指導(dǎo)教師 許瑛
二O一二 年 五 月
輪式移動機(jī)器人的結(jié)構(gòu)設(shè)計
學(xué)生姓名:鄧文文 班級:0881054
指導(dǎo)老師:許瑛
摘要:本文首先對機(jī)器人的國內(nèi)為發(fā)展現(xiàn)狀做了介紹,同時根據(jù)設(shè)計要求對機(jī)器人的整體方案進(jìn)行了分析,包括幾何尺寸、控制芯片的選擇。然后從機(jī)器人性能要求的角度出發(fā),分別對機(jī)器人的運動方式、模型結(jié)構(gòu)和車體成型方式做了比較,最終確定了非完整約束輪驅(qū)四輪式移動結(jié)構(gòu)模型——后輪同軸驅(qū)動,前輪轉(zhuǎn)向的輪型機(jī)器人。
本文對移動機(jī)器人硬件結(jié)構(gòu)做了詳細(xì)的可行性分析及設(shè)計,并且做了相應(yīng)的計算、校核,主要包括:驅(qū)動輪電機(jī)和轉(zhuǎn)向輪電機(jī)的選擇;齒輪的設(shè)計計算和校核;前后減震系統(tǒng)以及轉(zhuǎn)向機(jī)構(gòu)設(shè)計和車體的一些機(jī)械結(jié)構(gòu)設(shè)計等。對輪式移動機(jī)器人的運動學(xué)特性進(jìn)行了分析,建立了不考慮滑行、剎車等的輪式移動機(jī)器人的運動學(xué)模型。
最后,本文對所作研究和主要工作進(jìn)行了總結(jié),并將設(shè)計的輪式機(jī)器人的結(jié)構(gòu)進(jìn)行聯(lián)合調(diào)試。實驗結(jié)果表明,該系統(tǒng)性能穩(wěn)定、可靠,可控制性高,安全性高,達(dá)到了本設(shè)計的設(shè)計要求。
關(guān)鍵字:輪式移動機(jī)器人 運動學(xué)模型 結(jié)構(gòu)設(shè)計
指導(dǎo)老師簽名:
The structural design of the wheeled mobile robot
Student name: Deng Wenwen Class: 0881054
Supervisor: Xu Ying
Abstract: First in the paper for the domestic present situation of the development of the robot is presented, and according to the design requirements of the overall plan for robots are analyzed, including geometry size and control chip choice. Then from the Angle of robot performance requirements respectively, the robot mode of motion, model structure and body forming method are compared, final nonholonomic constraint four wheel drive wheeled mobile structure model, rear wheel drive coaxial, front wheel steering wheel robot.
In this paper, the mobile robot hardware structure of a detailed feasibility analysis and design, and make the corresponding calculation, checking, mainly including: the drive wheels motor and motor turning wheels choice; The design of gear calculate and check; Before and after the damping system and steering mechanism design and some of the mechanical structure design of the body. Wheeled mobile robots to the kinematic characteristics, the paper builds don't consider taxi, brake of the robot kinematics model.
Finally, this paper study and main work are summarized, and the wheel will design the structure of the robot joint debugging. The experimental results show that the system has stable performance, reliable, but controlling high, high safety, achieve the design design requirements.
Keywords: wheeled mobile robots kinematics model structure design
Signature of supervisor:
南昌航空大學(xué)科技學(xué)院學(xué)士學(xué)位論文
目 錄
1 前言··························································(2)
2 機(jī)構(gòu)的驅(qū)動方案設(shè)計········································(5)
2.1 機(jī)器人運動方式的選擇··········································(5)
2.2 輪式機(jī)器人驅(qū)動方案設(shè)計········································(9)
2.2.1輪式機(jī)器人驅(qū)動輪組成······································(10)
2.2.2輪式機(jī)器人轉(zhuǎn)向輪組成······································(11)
2.2.3電機(jī)選擇··················································(12)
2.2.4減速機(jī)構(gòu)的設(shè)計············································(17)
2.2.5變速箱體、前車體及電池箱··································(18)
2.2.6后減震及前減震機(jī)構(gòu)········································(19)
2.2.7車輪和輪轂················································(20)
3 傳動機(jī)構(gòu)、執(zhí)行機(jī)構(gòu)的設(shè)計及受力分析····················(23)
3.1 傳動機(jī)構(gòu)的設(shè)計················································(23)
3.2 執(zhí)行機(jī)構(gòu)的設(shè)計················································(24)
3.3 機(jī)器人受力分析及如何保證加速度最優(yōu)····························(24)
4 輪式移動機(jī)器人的運動學(xué)分析······························(26)
4.1 輪式式機(jī)器人的運動學(xué)建模······································(26)
4.2 阿克曼約束的機(jī)器人運動模型····································(29)
5 輪式移動機(jī)器人的運動控制系統(tǒng)設(shè)計·······················(32)
5.1 控制系統(tǒng)硬件設(shè)計··············································(32)
5.2 控制系統(tǒng)軟件設(shè)計··············································(34)
5.2.2上位機(jī)控制系統(tǒng)軟件設(shè)計····································(34)
5.2.3下位機(jī)控制系統(tǒng)軟件設(shè)計····································(34)
6 結(jié)論··························································(36)
參考文獻(xiàn)·························································(37)
致謝······························································(38)
1 前言
移動機(jī)器人的研究始于上世紀(jì)60年代末期,隨著計算機(jī)技術(shù)、傳感器技術(shù)以及信息處理技術(shù)的發(fā)展,移動機(jī)器人已被廣泛應(yīng)用于工業(yè)、農(nóng)業(yè)、醫(yī)療、保安巡邏等行業(yè)。機(jī)器人技術(shù)的發(fā)展,它應(yīng)該說是一個科學(xué)技術(shù)發(fā)展共同的一個綜合性的結(jié)果,也同時,為社會經(jīng)濟(jì)發(fā)展產(chǎn)生了一個重大影響的一門科學(xué)技術(shù),它的發(fā)展歸功于在第二次世界大戰(zhàn)中,各國加強(qiáng)了經(jīng)濟(jì)的投入,就加強(qiáng)了本國的經(jīng)濟(jì)的發(fā)展。另一方面它也是生產(chǎn)力發(fā)展的需求的必然結(jié)果,也是人類自身發(fā)展的必然結(jié)果,那么人類的發(fā)展隨著人們這種社會發(fā)展的情況,人們越來越不斷探討自然過程中,在改造自然過程中,認(rèn)識自然過程中,實現(xiàn)人們對不可達(dá)世界的認(rèn)識和改造,這也是人們在科技發(fā)展過程中的一個客觀需要。
國外對于移動機(jī)器人的研究起步較早,日本是開發(fā)機(jī)器人較早的國家,并成為世界上機(jī)器人占有量最多的國家,其次是美國和德國。進(jìn)入90年代,隨著技術(shù)的進(jìn)步,移動機(jī)器人開始在更現(xiàn)實的基礎(chǔ)上,開拓各個應(yīng)用領(lǐng)域,向?qū)嵱没M(jìn)軍。前蘇聯(lián)曾經(jīng)在移動機(jī)器人技術(shù)方面居于世界領(lǐng)先的地位,俄羅斯作為前蘇聯(lián)的繼承者,在機(jī)器人技術(shù)領(lǐng)域依然具有相當(dāng)雄厚的技術(shù)基礎(chǔ),ROVER科技有限公司把在開發(fā)空間機(jī)器人中獲得的經(jīng)驗應(yīng)用于開發(fā)地面機(jī)器人系統(tǒng),如極坐標(biāo)平面移動車、爬行移動機(jī)器人、球形機(jī)器人、工作伙伴平臺以及ROSA-2移動車等,最近的突出成果是2003年發(fā)射的火星漫游機(jī)器人一一“勇氣”號與“機(jī)遇”號。雖然國內(nèi)有關(guān)移動機(jī)器人研究的起步較晚,但也取得了不少成績。2003年國防科技大學(xué)賀漢根教授主持研制的無人駕駛車采用了四層遞階控制體系結(jié)構(gòu)以及機(jī)器學(xué)習(xí)等智能控制算法,在高速公路上達(dá)到了130 Km/h的穩(wěn)定時速,最高時速170 Km/h,而且具備了自主超車功能,這些技術(shù)指標(biāo)均處于世界領(lǐng)先的地位[1]。但是我國在機(jī)器人的核心及關(guān)鍵技術(shù)的原創(chuàng)性研究、高性能關(guān)鍵工藝裝備的自主設(shè)計和制造能力、高可靠性基礎(chǔ)功能部件的批量生產(chǎn)應(yīng)用等方面,同發(fā)達(dá)國家相比,我國仍存在較大的差距。未來研究熱點是將各種智能控制方法應(yīng)用到移動機(jī)器人的控制。
機(jī)器人分成三類,一種是第一代機(jī)器人,那么也叫示教再現(xiàn)型機(jī)器人,它是通過一個計算機(jī),來控制一個多自由度的一個機(jī)械,通過示教存儲程序和信息,工作時把信息讀取出來,然后發(fā)出指令,這樣的話機(jī)器人可以重復(fù)的根據(jù)人當(dāng)時示教的結(jié)果,再現(xiàn)出這種動作,比方說汽車的點焊機(jī)器人,它只要把這個點焊的過程示教完以后,它總是重復(fù)這樣一種工作,它對于外界的環(huán)境沒有感知,這個力操作力的大小,這個工件存在不存在,焊的好與壞,它并不知道,那么實際上這種從第一代機(jī)器人,也就存在它這種缺陷,因此,在20世紀(jì)70年代后期,人們開始研究第二代機(jī)器人,叫帶感覺的機(jī)器人,這種帶感覺的機(jī)器人是類似人在某種功能的感覺,比如說力覺、觸覺、滑覺、視覺、聽覺和人進(jìn)行相類比,有了各種各樣的感覺,比方說在機(jī)器人抓一個物體的時候,它實際上力的大小能感覺出來,它能夠通過視覺,能夠去感受和識別它的形狀、大小、顏色。抓一個雞蛋,它能通過一個觸覺,知道它的力的大小和滑動的情況。那么第三代機(jī)器人,也是我們機(jī)器人學(xué)中一個理想的所追求的最高級的階段,叫智能機(jī)器人,那么只要告訴它做什么,不用告訴它怎么去做,它就能完成運動,感知思維和人機(jī)通訊的這種功能和機(jī)能,那么這個目前的發(fā)展還是相對的只是在局部有這種智能的概念和含義,但真正完整意義的這種智能機(jī)器人實際上并沒有存在,而只是隨著我們不斷的科學(xué)技術(shù)的發(fā)展,智能的概念越來越豐富,它內(nèi)涵越來越寬。
本畢業(yè)設(shè)計課題主要是為了掌握和了解輪式移動機(jī)器人的基本結(jié)構(gòu)和運動控制系統(tǒng)的能力,基本能實現(xiàn)前進(jìn)、后退、360°范圍轉(zhuǎn)動的運動,也可以為機(jī)器人的運動和控制提供一個很好的研究平臺。本文所討論機(jī)器人系統(tǒng)運動學(xué)模型近似于汽車,因此稱為輪式機(jī)器人,它的組態(tài)由機(jī)器人在工作環(huán)境中的位態(tài)確定。
它作為一種小型輪式移動機(jī)器人,是一種非線性控制系統(tǒng)。為了能發(fā)揮將來加載到這種機(jī)器人上的功能因而對小車性能作了要求。
作為主要在室內(nèi)工作的機(jī)器人長度不宜超過1000mm高度要控制在機(jī)器人平衡穩(wěn)定運作的范圍內(nèi)。因此,車體在保證穩(wěn)定的情況下做的盡量小各部件排列方式應(yīng)盡量減小縱向尺寸,使車體緊湊。內(nèi)置于其中的電路板和電池的尺寸也要受到限制。設(shè)計電路是要盡量選用功能大、集成度高的芯片,而電池要選用體積小并且耐用的型號。因此,本課題控制器設(shè)計選用STC89LE52單片機(jī)來實現(xiàn)控制電路的架構(gòu),并且減少外圍邏輯電路,使板面布局緊湊。
車體系統(tǒng)的運動性能是影響系統(tǒng)性能,決定機(jī)器人性能達(dá)標(biāo)的重要因素。因此,在軟硬件選型時,滿足快速性、準(zhǔn)確性要求是考慮的第一要素之一。要求機(jī)構(gòu)能夠具有更大的靈活性與柔性,能夠具有更大的跨越障礙的能力。最好采用減震設(shè)計,它有利于保護(hù)機(jī)器人各組成部件,特別是電器元件。
相對于工業(yè)環(huán)境來講,我們設(shè)計的機(jī)器人所處的環(huán)境所受的強(qiáng)磁干擾要小得多,但是要達(dá)到系統(tǒng)運作實時、準(zhǔn)確,某些干擾就顯得較為明顯:
首先,機(jī)器人體積很小,電機(jī)及其驅(qū)動系統(tǒng),處理器系統(tǒng),無線模塊同處于很小的空間,這幾部分之間的相互干擾,特別是電機(jī)及其驅(qū)動系統(tǒng)對處理器的干擾,無線模塊對處理器的干擾以及無線通訊所特有的噪聲干擾都不容忽視。本課題中,分別采用了硬件抗干擾設(shè)計和軟件抗干擾設(shè)計。其次,機(jī)器人工作環(huán)境周圍的電器將對其產(chǎn)生影響。
2 機(jī)構(gòu)的驅(qū)動方案設(shè)計
2.1 機(jī)器人運動方式的選擇
到目前為止,地面移動機(jī)器人的行駛機(jī)構(gòu)主要分為履帶式、腿式和輪式三種。這三種行駛機(jī)構(gòu)各有其特點。
(1)履帶式
履帶最早出現(xiàn)在坦克和裝甲車上,后來出現(xiàn)在某些地面行駛的機(jī)器人上,它具有良好的穩(wěn)定性能、越障性能和較長的使用壽命,適合在崎嶇的地面上行駛,但是當(dāng)?shù)孛姝h(huán)境惡劣時,履帶很快會被磨損甚至磨斷,沉重的履帶和繁多的驅(qū)動輪使得整體機(jī)構(gòu)笨重不堪,消耗的功率也相對較大。此外,履帶式機(jī)構(gòu)復(fù)雜,運動分析及自主控制設(shè)計十分困難。
履帶地面移動機(jī)器人是一種通用機(jī)器人平臺,根據(jù)用途的不同,可以在機(jī)器人上加裝不同的功能模塊和傳感器,以完成復(fù)雜環(huán)境下的救援、偵查、排爆、掃雷、傷員撤離等任務(wù)。加裝了遙控控制電路、主云臺攝像頭、多個從攝像頭、MTI微慣導(dǎo)單元和激光掃描測距傳感器(LRF),機(jī)器人可以在人遠(yuǎn)程遙控下運動和作業(yè)。
圖1 四段履帶機(jī)器人
圖2 六段履帶機(jī)器人
(2)腿式
第一,腿式機(jī)器人的運動軌跡是一系列離散的足印,輪式和履帶式機(jī)器人的則是一條條連續(xù)的轍跡。崎嶇地形中往往含有巖石、泥土、沙子甚至峭壁和陡坡等障礙物,可以穩(wěn)定支撐機(jī)器人的連續(xù)路徑十分有限,這意味著輪式和履帶式機(jī)器人在這種地形中已經(jīng)不適用。而腿式機(jī)器人運動時只需要離散的點接觸地面,對這種地形的適應(yīng)性較強(qiáng),正因為如此,腿式機(jī)器人對環(huán)境的破壞程度也較小。
第二,腿式機(jī)器人的腿部具有多個自由度,使運動的靈活性大大增強(qiáng)。它可以通過調(diào)節(jié)腿的長度保持身體水平,也可以通過調(diào)節(jié)腿的伸展程度調(diào)整重心的位置,因此不易翻倒,穩(wěn)定性更高。
第三,腿式機(jī)器人的身體與地面是分離的,這種機(jī)械結(jié)構(gòu)的優(yōu)點在于,機(jī)器人的身體可以平穩(wěn)地運動而不必考慮地面的粗糙程度和腿的放置位置。當(dāng)機(jī)器人需要攜帶科學(xué)儀器和工具工作時,首先將腿部固定,然后精確控制身體在三維空間中的運動,就可以達(dá)到對對象進(jìn)行操作的目的了。
當(dāng)然,腿式機(jī)器人也存在一些不足之處。比如,為使腿部協(xié)調(diào)而穩(wěn)定運動,從機(jī)械結(jié)構(gòu)設(shè)計到控制系統(tǒng)算法都比較復(fù)雜;相比自然界的節(jié)肢動物,仿生腿式機(jī)器人的機(jī)動性還有很大差距。
腿式機(jī)構(gòu)具有出色的越野能力,曾經(jīng)得到機(jī)器人專家的廣泛重視,取得了較大的成果。根據(jù)腿的數(shù)量分類,有三腿、四腿、五腿和六腿等各種行駛結(jié)構(gòu)。這里我們簡單介紹一種典型的六腿機(jī)構(gòu)。
一般六腿機(jī)構(gòu)都采用變換支撐腿的方式,將整體的重心從一部分腿上轉(zhuǎn)移到另一部分腿上,從而達(dá)到行走的目的。行走原理為:靜止時,由六條腿支撐機(jī)器人整體。需要移動時,其中三條腿抬起成為自由腿(腿的端點構(gòu)成三角形),機(jī)器人的重心便落在三條支撐腿上,然后自由腿向前移動,移動的距離和方位由計算機(jī)規(guī)劃,但必須保證著地時自由腿的端點構(gòu)成三角形。最后支撐腿向前移動,重心逐漸由支撐腿過渡到自由腿,這時自由腿變成支撐腿,支撐腿變成自由腿,從而完成一個行走周期。
腿式機(jī)器人特別是六腿機(jī)器人,具有較強(qiáng)的越野能力,但結(jié)構(gòu)比較復(fù)雜,而且行走速度較慢。
圖3 三腿機(jī)器人 圖4 四腿機(jī)器人
(3)輪式
輪式機(jī)器人具有運動速度快的優(yōu)點,只是越野性能不太強(qiáng)。適于室內(nèi)、硬路面等平整地面,特別不適合松軟或崎嶇地面。按照車輪數(shù)目雖然不能對輪式移動機(jī)器人進(jìn)行嚴(yán)格的歸類, 但是不同的車輪數(shù)目依然決定了不同的控制方式, 例如滾動機(jī)器人和四輪移動機(jī)器人顯然在控制原理上是不同的?;仡欇喪揭苿訖C(jī)器人研究已取得的主要成果, 按車輪數(shù)目對地面移動機(jī)器人進(jìn)行了歸類分析, 對單輪滾動機(jī)器人、兩輪移動機(jī)器人、三輪、四輪、六輪及八輪移動機(jī)器人、復(fù)合式(帶有車輪)移動機(jī)器人進(jìn)行了分析和總結(jié)。
圖6 單輪滾動機(jī)器人 圖7 兩輪移動機(jī)器人
圖8 三輪移動機(jī)器人 圖9 四輪移動機(jī)器人
圖10 六輪移動機(jī)器人 圖11 八輪移動機(jī)器人
現(xiàn)在的許多輪式己經(jīng)不同于傳統(tǒng)的輪式結(jié)構(gòu),隨著各種各樣的車輪底盤的出現(xiàn),實現(xiàn)了輪式與腿式結(jié)構(gòu)相結(jié)合,具有與腿式結(jié)構(gòu)相媲美的越障能力。如今人們對機(jī)器人機(jī)構(gòu)研究的重心也隨之轉(zhuǎn)移到輪腿結(jié)合式機(jī)構(gòu)上來了。
圖13 輪腿式機(jī)器人
美國的 Nomad,日本的Nissan rover,都是四輪機(jī)器人。四輪機(jī)構(gòu)的機(jī)器人優(yōu)點在于車輪數(shù)少,結(jié)構(gòu)相對簡單,便于控制,但其缺點是車體的抗振動性能較差,抗傾覆能力也差,同時承載能力有限,載荷容易分布不均,出現(xiàn)偏重現(xiàn)象。
另外,若采用四輪結(jié)構(gòu),一般都需要設(shè)置彈簧和阻尼器等隔振設(shè)施,無形中增加
了結(jié)構(gòu)的復(fù)雜程度,同時也降低了車輛結(jié)構(gòu)的可靠性,縮小了機(jī)器人的使用范圍。
從目前公開的資料來看,五輪車的研究較少,僅有日本宇航科學(xué)研究所CISAS,
Institute of Space and Astronautical Science)研究的Micro-5 和上海交大
研究的五輪鉸接式機(jī)器人。Micro-5 機(jī)器人是一種左右車身分體式結(jié)構(gòu),行走機(jī)
構(gòu)名為PEGASUS 結(jié)構(gòu)。在傳統(tǒng)的四輪結(jié)構(gòu)基礎(chǔ)上,它在左右車身之間增加了一個
連桿和一個車輪,來幫助其余四個車輪越障。所以,這種結(jié)構(gòu)越障能力較強(qiáng)。
六輪機(jī)器人結(jié)構(gòu)簡單,便于實現(xiàn)控制,質(zhì)最也輕,越障能力雖不好,可以為車載儀器提供一個穩(wěn)定的平臺。不過,它也存在一定的缺點,就是越障能力不如四輪機(jī)構(gòu)。
八輪車的優(yōu)點是驅(qū)動力強(qiáng),承載能力較強(qiáng),載荷分布也較平均,有利于車體穩(wěn)定。但其結(jié)構(gòu)復(fù)雜,質(zhì)量增加,越障能力和轉(zhuǎn)向功能則明顯不如四輪和六輪結(jié)構(gòu),因此,在國內(nèi)外公開的資料中,這種結(jié)構(gòu)并沒有得到則真正的應(yīng)用,僅僅停留在試驗階段。
通常輪式移動機(jī)器人按其輪子具有的運動自由度 DOM(Degree of Mobility)和舵性自由度DOS (Degree of Steeribility)來定義移動機(jī)器人的移動能力。
由此可將輪式移動機(jī)器人的結(jié)構(gòu)劃分為五種類型,表示為(DOM, DOS)形式,即(3,
0), (2, 0), (2, 1), (1, 1)與(1, 2)類型。其中只具有兩個運動自由度的(2, 0)
系統(tǒng)為目前普遍的研究對象,因為其結(jié)構(gòu)相對簡單,比較容易實現(xiàn)。
在設(shè)計移動機(jī)器人時也應(yīng)遵循以下機(jī)構(gòu)設(shè)計原則:
1、總體結(jié)構(gòu)應(yīng)容易拆卸,便于平時的試驗、調(diào)試、和修理。
2、應(yīng)給機(jī)器人暫時未能裝配的傳感器、功能元件等預(yù)留安裝位置,以備將
來功能改進(jìn)與擴(kuò)展。
3、采取模塊化設(shè)計,各個功能模塊之間相互獨立裝配,互不干擾。
通過對以上方式的比較,我們選用輪子方式做為機(jī)器人運動方式,它符合我
們的設(shè)計要求:適應(yīng)室內(nèi)活動環(huán)境,需要動力較小,能量消耗少,結(jié)構(gòu)實現(xiàn)簡單可靠。
2.2 輪式機(jī)器人驅(qū)動方案設(shè)計
輪式機(jī)器人的機(jī)械結(jié)構(gòu)如圖2-1:
圖2-1 后輪驅(qū)動,前輪轉(zhuǎn)向結(jié)構(gòu)
根據(jù)設(shè)計需要和實現(xiàn)的難易程度選擇了圖2-1中的驅(qū)動方案機(jī)器人,稱之為后輪驅(qū)動輪型機(jī)器人,它是一種典型的非完整約束的輪式移動機(jī)器人模型。后輪為驅(qū)動輪,方向不變,提供前進(jìn)驅(qū)動力,兩輪驅(qū)動速度相同;前輪為轉(zhuǎn)向輪,稱為舵輪,通過轉(zhuǎn)向系統(tǒng)同步控制兩輪轉(zhuǎn)向,使機(jī)器人按照要求的方向移動。
輪式移動機(jī)構(gòu)又主要分三個輪、四個輪、三輪支撐理論上是穩(wěn)定的,然而這種裝置很容易在施加到單獨輪的左右兩側(cè)力F作用下翻倒,因此對負(fù)載有一定限制。為提高穩(wěn)定性和承載能力,決定選用四輪機(jī)構(gòu),后輪為兩驅(qū)動輪,兩個轉(zhuǎn)向輪為前輪,具體結(jié)構(gòu)模型見UG圖2-2。這種結(jié)構(gòu)能實現(xiàn)運動規(guī)劃、穩(wěn)定以及跟蹤等控制任務(wù),可適應(yīng)復(fù)雜的地形,承載能力強(qiáng),但是軌跡規(guī)劃及控制相對復(fù)雜。
圖2-2 小車整體結(jié)構(gòu)UG模型圖
2.2.1 輪式機(jī)器人驅(qū)動輪的組成
1) 后輪驅(qū)動裝置機(jī)械結(jié)構(gòu)模型圖如圖2-3:
圖2-3 后輪驅(qū)動裝置機(jī)械結(jié)構(gòu)模型
后輪驅(qū)動裝置機(jī)械傳動結(jié)構(gòu)如圖2-4所示:
圖2-4 驅(qū)動輪機(jī)械傳動示意圖
1 變速箱底座 2 變速箱蓋 3 軸承 4 齒輪Ⅰ 5 齒輪Ⅱ
6 齒輪Ⅲ 7 電動機(jī) 8 中間軸 9 輪轂 10 輪胎
根據(jù)上面所確定的方案,輪式機(jī)器人后輪驅(qū)動裝置由驅(qū)動電機(jī),減速裝置和車輪及輪轂組成。
2.2.2 輪式機(jī)器人轉(zhuǎn)向輪的組成
轉(zhuǎn)向輪起支撐和轉(zhuǎn)向作用,不產(chǎn)生驅(qū)動力矩,在小車轉(zhuǎn)向時它可以以一定角度轉(zhuǎn)動。主要機(jī)械組成結(jié)構(gòu)如圖2-5:
圖2-5 轉(zhuǎn)向裝置模型圖
輪式機(jī)器人前輪驅(qū)動裝置由以下幾部分構(gòu)成:驅(qū)動電機(jī),蓄電池和充電部分,轉(zhuǎn)向傳動機(jī)構(gòu)和前減震機(jī)構(gòu),前車體和電池箱及輪胎和輪轂五部分,如下圖2-6所示:
圖2-6 轉(zhuǎn)向裝置結(jié)構(gòu)圖
1 前減震彈簧 2 轉(zhuǎn)向連桿 3 拉桿 4 拉緊彈簧 5 撥叉
6 步進(jìn)電機(jī) 7 前車體蓋 8 轉(zhuǎn)向節(jié) 9 前輪軸 10 前輪轂
11 輪胎 12 電池盒蓋 13 后減震彈簧14 連接軸 15 變速箱
2.2.3 電機(jī)的選擇
目前在機(jī)器人的運動控制中較為常用的電機(jī)有直流伺服電機(jī)、交流伺服電機(jī)和步進(jìn)電機(jī),對它們的特性、工作原理與控制方式有分類介紹,下面總結(jié)如表2-1所示:
表2-1 不同電機(jī)的特性、工作原理與控制方式
電機(jī)類型
主要特點
構(gòu)造與工作原理
控制方式
直流伺服電機(jī)
接通直流電即可工作,控制簡單;啟動轉(zhuǎn)矩大、體積小、重量輕,轉(zhuǎn)速和轉(zhuǎn)矩容易控制、效率高;需要定時維護(hù)和更換電刷,使用壽命短、噪聲大。
由永磁體定子、線圈轉(zhuǎn)子、電刷和換向器構(gòu)成。通過電刷和換向器使電流方向隨轉(zhuǎn)子的轉(zhuǎn)動角度而變化,實現(xiàn)連續(xù)轉(zhuǎn)動。
轉(zhuǎn)動控制采用電壓控制方式,兩者成正比。轉(zhuǎn)矩控制采用電流控制方式,兩者也成正比。
交流伺服電機(jī)
沒有電刷和換向器,無需維護(hù);驅(qū)動電路復(fù)雜,價格高。
按結(jié)構(gòu)分為同步和異步電電刷和換向器構(gòu)成。通過電刷和換向器使電流方向隨轉(zhuǎn)子的轉(zhuǎn)動角度而變化,實現(xiàn)連續(xù)轉(zhuǎn)動。
分為電壓控制和頻率控制兩種方式。異步電機(jī)常采用電壓控制。
步進(jìn)電機(jī)
直接用數(shù)字信號控制,與計算機(jī)接口簡單,沒有電刷,維護(hù)方便,壽命長。缺點是能量轉(zhuǎn)換效率低,易失步,過載能力弱。
按產(chǎn)生轉(zhuǎn)矩的方式可以分為:永磁式,反應(yīng)式和混合式。混合式能產(chǎn)生較大轉(zhuǎn)矩,連續(xù)轉(zhuǎn)動。
永磁式是單向勵磁,精度高,但易失步,反應(yīng)式;是雙向勵磁,輸出轉(zhuǎn)矩大,轉(zhuǎn)子過沖小,但效率低;混合式是單-雙向勵磁,分辨率高,運轉(zhuǎn)平穩(wěn)。
一般機(jī)器人用電機(jī)的基本性能要求:
1. 啟動、停止和反向均能連續(xù)有效的進(jìn)行,具有良好的響應(yīng)特性;
2. 正轉(zhuǎn)反轉(zhuǎn)時的特性相同,且運行特性穩(wěn)定;
3. 良好的抗干擾能力,對輸出來說,體積小、重量輕;
4. 維修容易,不用保養(yǎng)。
1)、 驅(qū)動輪為兩后輪,要求控制性好且精度高,能耗要低,輸出轉(zhuǎn)矩大,有一定過載能力,而且穩(wěn)定性好。通過比較以上電機(jī)的特性、工作原理、控制方式以及移動機(jī)器人的移動性能要求、自身重量、傳動機(jī)構(gòu)特點等因素,所以我們決定選用直流電機(jī)作為驅(qū)動電機(jī)。
直流電動機(jī)以其良好的線性調(diào)速特性、簡單的控制性能、較高的效率、優(yōu)異的動態(tài)特性,一直占據(jù)著調(diào)速控制的統(tǒng)治地位。雖然近年不斷受到其他電動機(jī)(如交流變頻電動機(jī)、步進(jìn)電動機(jī)等)的挑戰(zhàn),但直流電動機(jī)仍然是許多調(diào)速控制電動機(jī)的最優(yōu)選擇,在生產(chǎn)、生活中有著廣泛的應(yīng)用。
所需電機(jī)的功率計算:
機(jī)器人小車的受力簡圖如圖2-7所示:
機(jī)器人所需的牽引力:
Fa=Ff + Fw ;
Fa:機(jī)器人移動需要的牽引力
Fw=mgsinθ ;
Fw:自身重力而產(chǎn)生的阻力
Ff=umgcosθ ;
Ff:機(jī)器人移動所受摩擦力
圖2-7 機(jī)器人小車的受力簡圖
則有:
Fa=mgsinθ + umgcosθ ;
U-摩擦系數(shù)
θ-最大爬坡角度
則機(jī)器人在水平面上運動的功率為:
P=Fa·V=0.15×3.0×9.8×1.5=6.61W
傳動裝置的總功率:
η=η2G·η2B
按照文獻(xiàn)[14]中表2.1-1確定的各部分效率有:齒輪傳動效率:ηG=0.97;滑動軸承:ηB=0.97
代入得到:
η=0.972×0.972=0.89
所需直流電機(jī)的最小功率:
P=Pw/η=6.61/0.89=6.82W
通過以上的比較和計算,我們決定選用廣東德昌微電機(jī)公司生產(chǎn)的SRC-555-3250
型直流電動機(jī)其外觀如圖2-8所示,技術(shù)參數(shù)如表2-2。
圖2-8 電動機(jī)其外觀如圖
表2-2 直流電機(jī)技術(shù)參數(shù)表
空載
最大功率下
制動
型號
額定電壓
轉(zhuǎn)速
電流
轉(zhuǎn)速
電流
力矩
功率
力矩
功率
r/min
A
r/min
A
g·cm
W
g·cm
W
SRC-555-3250
12v
CONS
TANT
6100
0.24
5300
1.49
229
12.4
1650
9.20
2)、 轉(zhuǎn)向輪的電機(jī)通過對表2-1不同電機(jī)的特性、工作原理與控制方式的分析比較,為了滿足轉(zhuǎn)向系統(tǒng)轉(zhuǎn)動精度高,控制性能強(qiáng),并且控制簡單容易實現(xiàn)的特點決定選用步進(jìn)電機(jī)作為轉(zhuǎn)向機(jī)構(gòu)驅(qū)動電機(jī)。
步進(jìn)電機(jī)是一種將電脈沖信號轉(zhuǎn)換成角位移(或線位移)的機(jī)電元件。對這種電機(jī)施加一個電脈沖后,其轉(zhuǎn)軸就轉(zhuǎn)過一個角度,稱為一步;脈沖數(shù)增加,角位移(或線位移)就隨之增加,脈沖頻率高。則步進(jìn)電機(jī)旋轉(zhuǎn)速度就高,反之就低;分配脈沖的相序改變后,步進(jìn)電機(jī)的轉(zhuǎn)向則隨之而變。步進(jìn)電機(jī)的運動狀態(tài)和通常勻速旋轉(zhuǎn)的電動機(jī)有一定的差別,它是步進(jìn)形式的運動,故也稱其為步進(jìn)電動機(jī)。
步進(jìn)電機(jī)的主要指標(biāo)有:
相數(shù):產(chǎn)生不同對極N, S磁場的激磁線圈對數(shù)。常用m表示。
拍數(shù):完成一個磁場周期性變化所需脈沖數(shù)或?qū)щ姞顟B(tài)用n表示,或指電機(jī)轉(zhuǎn)過一個齒距角所需脈沖數(shù):以四相電機(jī)為例,有四相四拍運行方式即AB-BC-CD-DA-AB,八拍運行方式即A-AB-B-BC-C-CD-D-DA-A 。
步距角:對應(yīng)一個脈沖信號,電機(jī)轉(zhuǎn)子轉(zhuǎn)過的角位移用θ表示。θ=360度(轉(zhuǎn)子齒數(shù)J*運行拍數(shù)),以常規(guī)二、四相,轉(zhuǎn)子齒為50齒電機(jī)為例。四拍運行時步距角為θ=360°/(50×4)=1.8°(俗稱整步),八拍運行時步距角為θ=360°/(50×8)=0.9°(俗稱半步)。
定位轉(zhuǎn)矩:電機(jī)在不通電狀態(tài)下,電機(jī)轉(zhuǎn)子自身的鎖定力矩(由磁場齒形的諧波以及機(jī)械誤差造成的)。
靜轉(zhuǎn)矩:電機(jī)在額定靜態(tài)電作用下,電機(jī)不作旋轉(zhuǎn)運動時,電機(jī)轉(zhuǎn)軸的鎖定力矩。此力矩是衡量電機(jī)體積(幾何尺寸)的標(biāo)準(zhǔn),與驅(qū)動電壓及驅(qū)動電源等無關(guān)。雖然靜轉(zhuǎn)矩與電磁激磁匝數(shù)成正比,與定齒轉(zhuǎn)子間的氣隙有關(guān),但過分采用減小氣隙,增加激磁安匝來提高靜力矩是不可取的,這樣會造成電機(jī)的發(fā)熱及機(jī)械噪音。
步距角精度:步進(jìn)電機(jī)每轉(zhuǎn)過一個步距角的實際值與理論值的誤差。用百分比表示:誤差/步距角×100%。不同運行拍數(shù)其值不同,四拍運行時應(yīng)在5%之內(nèi),八拍運行時應(yīng)在15%以內(nèi)。
失步:電機(jī)運轉(zhuǎn)時運轉(zhuǎn)的步數(shù),不等于理論上的步數(shù),稱之為失步。
失調(diào)角:轉(zhuǎn)子齒軸線偏移定子齒軸線的角度,電機(jī)運轉(zhuǎn)必存在失調(diào)角,由失調(diào)角產(chǎn)生的誤差,采用細(xì)分驅(qū)動是不能解決的。
最大空載起動頻率:電機(jī)在某種驅(qū)動形式、電壓及額定電流下,在不加負(fù)載的情況下,能夠直接起動的最大頻率。
最大空載的運行頻率:電機(jī)在某種驅(qū)動形式,電壓及額定電流下,電機(jī)不帶負(fù)載的最高轉(zhuǎn)速頻率。
運行矩頻特性:電機(jī)在某種測試條件下測得運行中輸出力矩與頻率關(guān)系的曲線稱為運行矩頻特性,這是電機(jī)諸多動態(tài)曲線中最重要的,也是電機(jī)選擇的根本依據(jù)。
步進(jìn)電機(jī)有其獨特的優(yōu)點,歸納起來主要有:
1. 步距值不受各種干擾因素的影響。簡而言之,轉(zhuǎn)子運動的速度主要取決于脈沖信號的頻率,而轉(zhuǎn)子運動的總位移量取決于總的脈沖個數(shù)。
2. 位移與輸入脈沖信號相對應(yīng),步距誤差不長期積累。因此可以組成結(jié)構(gòu)較為簡單而又具有一定精度的開環(huán)控制系統(tǒng),也可以在要求更高精度時組成閉環(huán)控制系統(tǒng)。
3. 可以用數(shù)字信號直接進(jìn)行開環(huán)控制,整個結(jié)構(gòu)簡單廉價。
4. 無刷,電動機(jī)本體部件少,可靠性高。
5. 控制性能好。起動、停車、反轉(zhuǎn)及其他運行方式的改變,都在脈沖內(nèi)完成,在一定的頻率范圍內(nèi)運行時,任何運行方式會丟步。
6. 停止時有自鎖能力。
7. 步距角選擇范圍大,可在幾角分至180°大范圍內(nèi)選擇。在小情況下,通??梢栽诔退傧赂咿D(zhuǎn)距穩(wěn)定的運行。
通過比較各種指標(biāo)和參數(shù)后,決定選用常州豐源公司生產(chǎn)的35BYHJ03減速步
進(jìn)電機(jī)步進(jìn)電機(jī),自帶25:1的減速器。參數(shù)如表2-3所示:
表2-3 步進(jìn)電機(jī)參數(shù)
步距角 θ
,°
相數(shù)
電壓
電流
電阻
減速比
空載運行頻率
F,pps
空載啟動頻率F,pps
啟動轉(zhuǎn)矩T,(g.cm)
鎖定轉(zhuǎn)矩T,(g.cm)
7.5/25
4
12
255
47
1/25
550
680
750
1400
2.2.4 減速機(jī)構(gòu)的設(shè)計
直流電機(jī)輸出轉(zhuǎn)速較高,一般不能直接接到車輪軸上,需要減速機(jī)構(gòu)來降速,同時也提高了轉(zhuǎn)距。減速裝置的形式多種多樣,選擇一種合適的減速裝置對機(jī)器人的性能有著相當(dāng)重要的作用。
齒輪傳動:工作可靠,使用壽命長;易于維護(hù);瞬時傳動比為常數(shù);傳動效率高;結(jié)構(gòu)緊湊;功率和速度使用范圍很廣。缺點:制造復(fù)雜成本高;不宜用于軸間距的傳動。
結(jié)合本設(shè)計中機(jī)器人的要求,輸出轉(zhuǎn)矩大傳動效率高噪音小等條件,我們采用兩級齒輪傳動,減速比為15:1。電機(jī)軸直接作為輸入軸安裝主動齒輪,不是用聯(lián)軸器,既提高了精度又減輕了重量。輪轂和齒輪3安裝在同一根軸上,他們轉(zhuǎn)速相同。齒輪類型為漸開線直齒齒輪,聯(lián)軸器相聯(lián)齒輪與車輪裝在同一個軸上,它們的轉(zhuǎn)速相同。
齒輪參數(shù)如下:
第一級減速:i1=3,m=3,z1=10,d1=30mm;z2=30,d2=90mm
第二級減速:i2=5,m=3,z3=10,d1=30mm;z4=50,d2=150mm
齒輪傳動的計算
設(shè)計中第一級齒輪傳動的齒輪強(qiáng)度計算:
齒面接觸疲勞強(qiáng)度計算
轉(zhuǎn)矩T1
T1=9.55×1000000×0.0124/1800=65.8
齒數(shù)ψd
由文獻(xiàn)[8]表12.13,取ψd=0.6
接觸疲勞極限
σHilm初步計算的許用接觸應(yīng)力[σH]
由文獻(xiàn)[7]表1.7
[σH1]≈0.9σHilm1=0.9×25
[σH2]≈0.9σHilm2=0.9×25
σHilm1=25MPa
σHilm2=25MPa
Ad值
由文獻(xiàn)[7]取Ad=30
初步計算小齒輪直徑d1
=21.8mm
取d1=25mm
初步齒寬b
b=ψd×d1=0.6×25=15mm
2.2.5 變速箱體、前車體及電池箱
變速箱體要求在保證足夠剛度的條件下,應(yīng)盡量減輕車架的重量,以提高有效承載重量。其次,變速箱體應(yīng)保證其它元件安裝上以后,能達(dá)到平衡、對稱和同軸。材料為ABS,厚度為6mm,軸承盒集成在箱體上,降低了制造難度。變速箱實物參考圖如圖2-9。
圖2-9 變速器實物參考圖
前車體是轉(zhuǎn)向機(jī)構(gòu)零件的載體,其結(jié)構(gòu)復(fù)雜,要求精度也高(特別是轉(zhuǎn)向節(jié)安放孔和電機(jī)支撐座等,要求同軸度和垂直度高,因此為了提高裝配精度,車體蓋和車體配合的螺栓孔采用了卯榫式設(shè)計,保證了裝配的精度)。
為簡化制造工序,提高車體的緊湊程度和牢固程度,將電池盒設(shè)計到前車體后部,并且盡量降低電池盒與地面間距,以降低機(jī)器人的重心高度。
為了保證運行時電池在和內(nèi)的牢靠程度和降低噪聲,電池盒蓋內(nèi)側(cè)附貼一薄層海綿。
控制電路容易受到電動機(jī)和驅(qū)動電路的影響,因此我們將控制電路板與驅(qū)動板并列排列見圖2-10,支腳的布局方式見圖2-11。
圖2-10 控制電路板與驅(qū)動板并列
圖2-11 前車體實物模型圖
2.2.6 后減震及前減震機(jī)構(gòu)
為保護(hù)系統(tǒng)結(jié)構(gòu)免受震動的損傷,和提高躍障能力,在變速箱與后車體間加一減震彈簧。它不但能緩沖震動,而且當(dāng)機(jī)器人遇到低于100mm 的幛礙物,或者高低不平的路面時不至于被架空,其結(jié)構(gòu)模型如圖2-12所示:
圖2-12 后減震結(jié)構(gòu)模型圖
為保護(hù)系統(tǒng)結(jié)構(gòu)免受震動的損傷,提高機(jī)器人在不平地面上的行走能力,在每個轉(zhuǎn)向節(jié)軸上加裝減震彈簧。它不但能緩沖震動,而且防止在特殊情況下機(jī)器人被架空。它與后減震配合工作效果更加明顯,工作原理與后減震類似。
2.2.7 車輪及輪轂
本設(shè)計中可選用機(jī)器人的運動方式為輪子方式,輪子方式可以提供多種排列方式,從而滿足不同情況需要,而且轉(zhuǎn)向容易,可以實現(xiàn)運動的精確控制,機(jī)構(gòu)實現(xiàn)簡單。所以我們考慮到所設(shè)計機(jī)器人的工作環(huán)境和控制要求,我們選用了四輪方式。
選擇車輪需要考慮多種因素:有機(jī)器人的尺寸、重量、地形狀況、電機(jī)功率等。車重加負(fù)載重量為2kg—4.5kg,所以用質(zhì)地堅硬且易于加工的聚苯乙烯作輪轂,采用不充氣的中空橡膠輪胎,其優(yōu)點在于不僅重量小而且橡膠與地面的附著系數(shù)大,保證了足夠的驅(qū)動能力,輪胎及輪轂UG參考圖如圖2-13。
圖2-13 輪胎及輪轂UG模型圖
其機(jī)構(gòu)如圖2-13,其中輪胎直徑d=300mm,則車輪轉(zhuǎn)一圈移動的為:
S=πd=3.14×0.3=0.942m
車輪最大轉(zhuǎn)速為:
w1=w/i=5300/15=353.3r/min(電機(jī)轉(zhuǎn)速/轉(zhuǎn)動比)
則機(jī)器人的最大線速度為:
V=sw1=0.942×353.3=332.8m/min=5.55m/s
機(jī)器人小車的受力簡圖如圖2-7
機(jī)器人所需的牽引力
Fa=Ff + Fw ;
Fa-機(jī)器人移動所需的牽引力
Fw=mgsinθ ;
Ff-機(jī)器人移動所受摩擦力
Ff=umgcosθ ;
Fw-自身重 力而產(chǎn)生的阻力
則有:
Fa=mgsinθ+umgcosθ;
U-摩擦系數(shù);
θ-最大爬坡角度。
則機(jī)器人在水平面上的功率為:
P=Fa×V=0.15×3×9.8×5.55=24.47w
其最大加速度為:
a=Fa/m=0.15×3×9.8/8=0.55m/s2
前輪輪胎采用和后輪相同的結(jié)構(gòu)和材料,輪轂的軸孔與軸相對滑動,所以要求較后輪精度高機(jī),轉(zhuǎn)向節(jié)UG圖如圖2-14。
圖2-14 轉(zhuǎn)向節(jié)實物示意圖如圖
綜上所述,得到輪式機(jī)器人的技術(shù)參數(shù)如表2-4所示:
2-4 輪式機(jī)器人的技術(shù)參數(shù)
自由度數(shù)
2
電源
直流電源
運動方式
輪式
驅(qū)動方式
后輪驅(qū)動,前輪轉(zhuǎn)向
后輪驅(qū)動電機(jī)
直流電機(jī)
減速機(jī)構(gòu)形式
齒輪傳動
前輪驅(qū)動電機(jī)
步進(jìn)電機(jī)
控制方式
STC89LE52單片機(jī)
3 傳動機(jī)構(gòu)、執(zhí)行機(jī)構(gòu)的設(shè)計及受力分析
3.1 傳動機(jī)構(gòu)
在本課題中我們?yōu)榱说玫椒€(wěn)定和承載能力強(qiáng)的系統(tǒng)結(jié)構(gòu),采用了兩后置驅(qū)動輪,轉(zhuǎn)向輪不作為驅(qū)動輪,只提供支撐和轉(zhuǎn)向作用。結(jié)構(gòu)形式模仿普通機(jī)動車的一些結(jié)構(gòu),步進(jìn)電機(jī)變速箱輸出軸連接撥叉,撥叉撥動左右轉(zhuǎn)向節(jié)連桿來實現(xiàn)轉(zhuǎn)向。為了消除傳動間隙和電機(jī)反轉(zhuǎn)死區(qū),我們在機(jī)構(gòu)中加裝了,兩個拉緊桿和一條拉緊彈簧,很大程度上消除了誤差。轉(zhuǎn)向傳動機(jī)構(gòu)受力簡圖如圖3-1。
圖3-1 轉(zhuǎn)向傳動機(jī)構(gòu)受力簡圖
3.2 執(zhí)行機(jī)構(gòu)設(shè)計
執(zhí)行機(jī)構(gòu)是移動機(jī)器人完成各種所需運動的機(jī)械部件。
傳統(tǒng)的機(jī)器人關(guān)節(jié)多由電機(jī)或液(氣)壓缸等來驅(qū)動。以這種方式來驅(qū)動關(guān)節(jié),位置精度可以達(dá)到很高,但其剛度往往很大,實現(xiàn)關(guān)節(jié)的柔順運動較困難。而柔順性差的機(jī)器人在和人接觸的場合使用時,容易造成人身和環(huán)境的傷害。因此,在許多服務(wù)機(jī)器人或康復(fù)機(jī)器人研究中,確保機(jī)器人的關(guān)節(jié)具有一定的柔順性提高到了一個很重要的地位。
人類關(guān)節(jié)具有目前機(jī)器人所不具備的優(yōu)良特性,既可以實現(xiàn)較準(zhǔn)確的位置控制又具有很好的柔順性。這種特性主要是由關(guān)節(jié)所采用的對抗性肌肉驅(qū)動方式所決定的。目前模仿生物關(guān)節(jié)的驅(qū)動方式在仿生機(jī)器人中得到越來越多的應(yīng)用。在這種應(yīng)用中為得到類似生物關(guān)節(jié)的良好特性,一般都采用具有類似生物肌肉特性的人工肌肉。
氣動機(jī)械手是集機(jī)械、電氣、氣動和控制于一體的典型機(jī)電一體化產(chǎn)品。近年來,機(jī)械手在自動化領(lǐng)域中,特別是在有毒、放射、易燃、易爆等惡劣環(huán)境內(nèi),與電動和液壓驅(qū)動的機(jī)械手相比,顯示出獨特的優(yōu)越性,得到了越來越廣泛的應(yīng)用。
1)機(jī)械手的基本結(jié)構(gòu)
本文所設(shè)計的機(jī)械手的結(jié)構(gòu)如圖3-2:
1. 機(jī)架 2.氣動肌肉 3.第一肩關(guān)節(jié) 4.第二肩關(guān)節(jié) 5.機(jī)架臂 6.第三肩關(guān)節(jié) 7.大臂 8.肘關(guān)節(jié) 9.小臂 10.腕關(guān)節(jié) 11.氣爪
圖3-2 機(jī)械手的結(jié)構(gòu)
氣動機(jī)械手主要由起固定支撐作用的機(jī)架、機(jī)械臂和氣爪三部分組成。氣動機(jī)械手能夠?qū)崿F(xiàn)4個自由度(由于機(jī)構(gòu)運動確定,因此機(jī)構(gòu)的自由度等于機(jī)構(gòu)的原動件數(shù)目,此機(jī)構(gòu)有4個原動件,因此可得有4個自由度)的運動,其各自的自由度的驅(qū)動全部由氣動肌肉來實現(xiàn)。最前端的氣爪抓取物品,通過氣動肌肉的驅(qū)動實現(xiàn)各自關(guān)節(jié)的轉(zhuǎn)動,使物品在空間上運動,根據(jù)合理的控制,最終實現(xiàn)機(jī)械手的動作要求。驅(qū)動第一肩關(guān)節(jié)的運動有2根氣動肌肉組成,機(jī)架臂有4根氣動肌肉組成,大臂上安裝有4根氣動肌肉,小臂上安裝有4根氣動肌肉。
3.3 機(jī)器人受力分析及如何保證加速度最優(yōu)
本設(shè)計中輪型機(jī)器人采用四輪支撐,即兩后輪(驅(qū)動輪)和兩前輪(轉(zhuǎn)向輪)。為了增加車輪和地面的滑動摩擦系數(shù),每個車輪的輪胎材料均為橡膠?;瑒虞S承和輪轂采用了具有自潤滑能力的塑料,摩擦力很小,可以忽略不計。采用這些結(jié)構(gòu),使小車具有一很好的運動性能。機(jī)器人小車受力如圖3-3所示:
圖3-3 小車受力圖
有如下關(guān)系:
滑動摩擦力:
Fr=u·Ng
支撐反力:
Ng=G-N
G=m·g
水平方向受力:
Fr=F
F=m·a
以上關(guān)系可推出加速度:
a=u(m·g-N)/m
從上式可以看出,由于小車質(zhì)量m一定,若想增加加速度只有增加摩擦系數(shù)μ和減少支撐力N。由于輪型機(jī)器人活動場所在室內(nèi)需要頻繁的更換速度,只有加速度大一些時,才能滿足機(jī)器人快速性、實時性要求。
在摩擦系數(shù)一定時,只有盡量減少支撐力N,加速度才能達(dá)到最大,這直接關(guān)系到小車重心的位置。小車的電池和后加負(fù)載是小車中比重較大者,在放置是應(yīng)該盡量靠近后輪,這樣支撐力N就會減小,加速度在啟動時就能保持盡量大。通過計算機(jī)器人通過實驗驗證最優(yōu)加速度為3.92m/s左右。
4 輪式移動機(jī)構(gòu)運動學(xué)分析
4.1 輪式式機(jī)器人的運動學(xué)建模
首先對四輪車輛的水平面運動進(jìn)行研究.在整個分析過程中,將機(jī)器人建模成輪子上的一個剛體,運行在水平面上時,車輪與地面只有點接觸,輪子不可發(fā)生形變且是純滾動,不發(fā)生滑行、剎車等行為,忽略車輪外傾、側(cè)偏以及輪胎的影響。針對車式機(jī)器人的運動學(xué)建模,不能單一用后軸中點進(jìn)行建模還應(yīng)該取前軸或者其他參考點.這是因為車式機(jī)器人相對于普通機(jī)器人轉(zhuǎn)彎半徑較大,若不取多個參考點,不能完全體現(xiàn)它的運動情況。
圖4-1 四輪車式移動機(jī)器人的局部坐標(biāo)系和全局坐標(biāo)系
為了描述機(jī)器人在平面中的位置,建立全局坐標(biāo)系XI OYI 和機(jī)器人局部坐標(biāo)系XlOYl如圖3-1所示,選擇后軸中點Mr 作為局部坐標(biāo)系的原點.在全局坐標(biāo)系中,Mr 由(xr ,yr)確定,Mf(xf ,yf)為前軸中點坐標(biāo).在XlOYl中Mr 和Mf 的坐標(biāo)關(guān)系為
(1)
全局和局部參考系之間的角度差為θ(θ為機(jī)器人的航向角),令 為機(jī)器人在全局參考系中的位姿.用正交旋轉(zhuǎn)矩陣R(θ)將全局參考系映射到局部參考系中,即ζR=R(θ)ζI ,反之則有I
,式中:
(2)
機(jī)器人局部坐標(biāo)系如圖4-2所示,l 為軸距,ψ為車輪轉(zhuǎn)向角,d 為輪距,ICR(instantaneous center of rotation)為瞬時轉(zhuǎn)動中心。設(shè)Mr 、Mf 的瞬時轉(zhuǎn)彎半徑分別為ρr 、ρf。
圖4-2 機(jī)器人局部坐標(biāo)系
機(jī)器人的整體速率為后輪速率vr ,沿著局部坐標(biāo)系XR 正方向;vf 為前輪的速率,沿著輪子前進(jìn)的方向,vr 與vf 的關(guān)系為vf =vr /cosψ. (2)
在Δt 時間內(nèi),后輪XR 正向前進(jìn)分量為vt dt,YR方向無運動分量; 前輪XR 正方向前進(jìn)分量為vf cosψdt,YR 正方向前進(jìn)分量為vf sinψdt.若ψ不變,機(jī)器人瞬時沿著圓軌跡運動,瞬時前進(jìn)的距離為Δs,則有ds =ρdθ,如圖3所示.此時下式成立:
Ρ.dθ =v· dt. (3)
圖4-3 機(jī)器人瞬時沿圓周運動
另外在直角三角形內(nèi)有ρ=l/tanφ,ρf=l/sinφ,從而可得dθ=vr·dt/ρr =vr.tanφ/l ,即dθ/dt =tanφ/l vr ,同理可得dθ/dt =sinφ/l vf.此時ζRr=[vr 0 tanφ/l vr ]T ,ζRf=[vf cosφ vf sinφ sinφ/l vf ]T.Mr 在全局坐標(biāo)系中的位置狀態(tài)方程
(4)
即
(5)
Mf 在全局坐標(biāo)系中的位置狀態(tài)方程為
(6)
即
(7)
將式(2)代入(7)得
(8)
此時,分別建立起Mr 和Mf 的狀態(tài)方程(5)和(8),都與θ、φ、vr 有關(guān)。
4.2 阿克曼約束的機(jī)器人運動模型
四輪車輛的理想模型中,實際上是將前面的2個輪子看成了一個輪子在運動,如圖3-4所示.在實際的車式移動機(jī)器人轉(zhuǎn)向過程中,為了使所有車輪都處于純滾動而無滑動,要求轉(zhuǎn)向軸內(nèi)、外輪轉(zhuǎn)角之間符合阿克曼原理。令φ2 為內(nèi)輪的相對轉(zhuǎn)向角,φ1為外輪的相對轉(zhuǎn)向角.為了實現(xiàn)轉(zhuǎn)向時轉(zhuǎn)向車輪的純滾動,不發(fā)生橫向滑移,4 個車輪應(yīng)繞ICR 轉(zhuǎn)動,并且內(nèi)外輪轉(zhuǎn)角之間應(yīng)該滿足式(9):
(9)
可以解得
(10)
圖4-4 基于阿克曼原理的機(jī)器人運動模型
設(shè)ρlf和ρrf分別為左右兩前輪的瞬時轉(zhuǎn)彎半徑,得ρlf=l/SINφ1,ρrf=l/SIN φ2.同理可得左右后輪的瞬時轉(zhuǎn)彎半徑ρlr =l /tanφ+d/2,ρrr =l/tanφ-d/2.定義內(nèi)輪差Δρ=ρlf-ρlr (左轉(zhuǎn)向時為Δρ=ρrf-ρrr)。際運動過程中,轉(zhuǎn)向角φ保持不變時做圓周運動.在仿真過程中,φ取為時間t 的函數(shù)φ(t).機(jī)器人運動的軌跡圖如圖3-17 所示,分別代表了前后輪軸中點的運動軌跡。
圖4-5 機(jī)器人的運動軌跡圖
圖4-6 中所示為虛擬轉(zhuǎn)向角φ與實際車輛轉(zhuǎn)向角φ1 、φ2 間的關(guān)系圖.φ1 與φ2 的變化趨勢較為一致,據(jù)式(9)可得cotφ1 -cotφ2 的理論值為0.5556,實際仿真結(jié)果值為0.5505,誤差在可接受范圍內(nèi)。
圖4-6 轉(zhuǎn)向角φ1、φ2 、φ間的關(guān)系
圖4-7 反映了轉(zhuǎn)向角φ與航向角θ 的關(guān)系,航向角θ 大致可分為4 個階段,如圖中A、B、C 標(biāo)記所示.初始階段隨著φ的變化θ 逐漸增大,當(dāng)φ向相反方向逐漸變大時,θ 在點A 處才開始逐漸變?。冢?B 階段,φ的微小變化并沒有影響到整車運動的方向;到B-C 階段,θ 又隨著φ的反向開始變化.實驗有效地驗證了該運動模型符合實際機(jī)器人轉(zhuǎn)向角與航向角間的關(guān)系.
圖4-7 轉(zhuǎn)向角φ和航向角θ
5 輪式移動機(jī)器人的運動控制系統(tǒng)設(shè)計
5.1 控制系統(tǒng)硬件設(shè)計
運動控制器是移動機(jī)器人運動控制系統(tǒng)中的核心內(nèi)容。目前,國內(nèi)外運動控制器的種類和功能都在不斷豐富和發(fā)展,但總的情況是,國外的運動控控制器功能強(qiáng),使用的技術(shù)也比較先進(jìn),但是價格相當(dāng)昂貴,更重要的是這種運動控制器的使用方法不易為普通用戶所掌握,編程復(fù)雜,即使是專業(yè)人員也很難熟練掌握,這兩大不利因素限制了它的使用范圍,國內(nèi)的運動控制器性能和質(zhì)量總體來說跟國外的產(chǎn)品有一定的差距,或性能單一,或結(jié)構(gòu)復(fù)雜,且同樣存在使用不便難以掌握的缺點。那么,能不能設(shè)計一種結(jié)構(gòu)簡單,成本又低,使用和維護(hù)方便的運動控制器呢?這正是本節(jié)所嘗試解決的問題。在本文中,考慮到機(jī)器人小車本體結(jié)構(gòu)的情況和目前移動機(jī)器人控制技術(shù)的發(fā)展?fàn)顩r,采用主從式結(jié)構(gòu)的控制系統(tǒng),即由上位機(jī)完成復(fù)雜計算,將處理后的數(shù)據(jù)傳遞給下位機(jī),由下位機(jī)完成對小車本體的控制; 該系統(tǒng)設(shè)計的輪式移動機(jī)器人機(jī)械導(dǎo)航結(jié)構(gòu)采用四輪差速轉(zhuǎn)向式的機(jī)械機(jī)構(gòu)如圖5-1所示,前面兩個輪是轉(zhuǎn)向輪,后面兩個輪是驅(qū)動輪,由兩臺獨立的直流電機(jī)驅(qū)動,分別控制兩個驅(qū)動輪的轉(zhuǎn)速,可使機(jī)器人按照不同方向和速度移動,運動靈活,可控性好。機(jī)器人的主要運動狀態(tài)有直線運動(前進(jìn)、后退)、左右轉(zhuǎn)彎、原地零半徑轉(zhuǎn)彎(360°轉(zhuǎn)向)等。因而,有效地降低了成本。該控制器器通過串口與上位機(jī)通信,這樣,就簡化了控制器與上位機(jī)的連接,但不妨礙充分利用上位機(jī)的有關(guān)軟件資源。運動控制系統(tǒng)硬件結(jié)構(gòu)如圖5-2所示。
圖5-1 移動機(jī)器人的底盤系統(tǒng)
圖5-2 控制器硬件結(jié)構(gòu)框圖
控制器單元的選型:
移動機(jī)器入運動控制系統(tǒng)的核心是微控制器,作為機(jī)器人控制器的核心部件,高性能的CPU是必需的,選擇一個什么樣的微控制器對于機(jī)器人小車的性能、控制系統(tǒng)的設(shè)計方式有很大的影響,應(yīng)具體分析控制系統(tǒng)的特征和要求進(jìn)行微控制器的選擇,應(yīng)以運算速度、功能、兼容性、整個移動機(jī)器人系統(tǒng)的結(jié)構(gòu)、通信方式及通信速率、電機(jī)控制方式、ROM及RAM的大小為依據(jù)來選擇合適的微控制器。目前微控制器主要有數(shù)字信號處理器DSP、現(xiàn)場
收藏