《數學教案-平方差公式平方差公式》由會員分享,可在線閱讀,更多相關《數學教案-平方差公式平方差公式(8頁珍藏版)》請在裝配圖網上搜索。
1、數學教案-平方差公式_平方差公式
教學建議
一、知識結構
二、重點、難點分析^p
本節(jié)教學的重點是掌握公式的結構特征及正確運用公式.難點是公式推導的理解及字母的廣泛含義.平方差公式是進一步學習完全平方公式、進行相關代數運算與變形的重要知識基礎.
1.平方差公式是由多項式乘法直接計算得出的:
與一般式多項式的乘法一樣,積的項數是多項式項數的積,即四項.合并同類項后僅得兩項.
2.這一公式的結構特征:左邊是兩個二項式相乘,這兩個二項式中有一項完全相同,另一項互為相反數;右邊是乘式中兩項的平方差,即相同項的平方與相反項的平方差.公式中的字母可以表示具體的數(正數和負數
2、),也可以表示單項式或多項式等代數式.
只要符合公式的結構特征,就可運用這一公式.例如
在運用公式的過程中,有時需要變形,例如,變形為,兩個數就可以看清楚了.
3.關于平方差公式的特征,在學習時應注意:
(1)左邊是兩個二項式相乘,并且這兩上二項式中有一項完全相同,另一項互為相反數.
(2)右邊是乘式中兩項的平方差(相同項的平方減去相反項的平方).
(3)公式中的和可以是具體數,也可以是單項式或多項式.
(4)對于形如兩數和與這兩數差相乘,就可以運用上述公式來計算.
三、教法建議
1.可以將“兩個二項式相乘,積可能有幾項”的問題作為課題引入,目的是激發(fā)學生的學習興趣,使學生能
3、在兩個二項式相乘其積可能為四項、三項、兩項中找出積為兩項的特征,上升到一定的理論認識,加以實踐檢驗,從而培養(yǎng)學生觀察、概括的能力.
2.通過學生自己的試算、觀察、發(fā)現、總結、歸納,得出為什么有的兩個二項式相乘,其積為兩項,因為其中兩項是兩個數的平方差,而另兩項恰是互為相反數,合并同類項時為零,即
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
這樣得出平方差公式,并且把這類乘法的實質講清楚了.
3.通過例題、練習與小結,教會學生如何正確應用平方差公式.這里特別要求學生注意公式的結構,教師可以用對應思想來加強對公式結構的理解和訓練,如計算(1+2____)(1-2____),
4、
(1+2____)(1-2____)=12-(2____)2=1-4____2
↓ ↓ ↓ ↓ ↑ ↑
(a + b)(a - b)=a2- b2.
這樣,學生就能正確應用公式進行計算,不容易出差錯.
另外,在計算中不一定用一種模式刻板地應用公式,可以結合以前學過的運算法則,經過變形后靈活應用公式,培養(yǎng)學生解題的靈活性.
教學目標
1.使學生理解和掌握平方差公式,并會用公式進行計算; 2.注意培養(yǎng)學生分析^p 、綜合和抽象、概括以及運算能力.
教學重點和難點
重點:平方差公式的應用.
難點:用公式的結構特征判斷
題目能否使用公式.
教學過程設計
一、師生共同
5、研究平方差公式
我們已經學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發(fā)表自己的見解.教師根據學生的回答,引導學生進一步思考:
兩個二項式相乘,乘式具備什么特征時,積才會是二項式?為什么具備這些特點的兩個二項式相乘,積會是兩項呢?而它們的積又有什么特征?
(當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數的平方差)
繼而指出,在多項
6、式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
在此基礎上,讓學生用語言敘述公式.
二、運用舉例 變式練習
例1 計算(1+2____)(1-2____).
解:(1+2____)(1-2____)
=12-(2____)2
=1-4____2.
教師引導學生分析^p
題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么.
例2 計算(b2+2a3)(2a3-
7、b2).
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教師引導學生發(fā)現,只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
課堂練習
運用平方差公式計算:
(l)(____+a)(____-a); (2)(m+n)(m-n); (3)(a+3b)(a-3b); (4)(1-5y)(l+5y).
例3 計算(-4a-1)(-4a+1).
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l
8、)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根據學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數的和與這兩數的差相乘的形式,應用平方差公式,寫出結果.解法2把-4a看成一個數,把1看成另一個數,直接寫出(-4a)2-l2后得出結果.采用解法2的同學比較注意平方差公式的特征,能看到問題的本質,運算簡捷.因此,我們在計算中,先要分析^p
題目的數字特征,然后正確應用平方差公式,就能比較簡捷地得到答案.
9、
課堂練習
1.口答下列各題:
(l)(-a+b)(a+b); (2)(a-b)(b+a); (3)(-a-b)(-a+b); (4)(a-b)(-a-b).
2.計算下列各題:
(1)(4____-5y)(4____+5y); (2)(-2____2+5)(-2____2-5);
教師巡視學生練習情況,請不同解法的學生,或發(fā)生錯誤的學生板演,教師和學生一起分析^p 解法.
三、小結
1.什么是平方差公式?
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式; (2)有些式子表面不能應用公式,但實質能應用公式,要注意變形.
四、作業(yè)
10、
1.運用平方差公式計算:
(l)(____+2y)(____-2y);
(2)(2a-3b)(3b+2a); (3)(-1+3____)(-1-3____); (4)(-2b-5)(2b-5); (5)(2____3+15)(2____3-15); (6)(0.3____-0.l)(0.3____+l);
2.計算:
(1)(____+y)(____-y)+(2____+y)(2____+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b); (3)____(____-3)-(____+7)(____-7); (4)(2____-5)(____-2)+(3____-4)(3____+4).
第 8 頁 共 8 頁