影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.3空間向量的數(shù)量積

上傳人:沈*** 文檔編號:53710686 上傳時間:2022-02-10 格式:PPT 頁數(shù):21 大?。?30.50KB
收藏 版權(quán)申訴 舉報 下載
江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.3空間向量的數(shù)量積_第1頁
第1頁 / 共21頁
江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.3空間向量的數(shù)量積_第2頁
第2頁 / 共21頁
江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.3空間向量的數(shù)量積_第3頁
第3頁 / 共21頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.3空間向量的數(shù)量積》由會員分享,可在線閱讀,更多相關(guān)《江蘇如東馬塘中學(xué)高中數(shù)學(xué)《空間向量》全章課件蘇教版選修213.1.3空間向量的數(shù)量積(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、空間向量的數(shù)量積運算空間向量的數(shù)量積運算江蘇如東馬塘中學(xué)江蘇如東馬塘中學(xué) 張偉鋒張偉鋒教學(xué)過程一、幾個概念一、幾個概念1 1) 兩個向量的夾角的定義兩個向量的夾角的定義abbaba,0被唯一確定了,并且量的夾角就在這個規(guī)定下,兩個向范圍:bababa互相垂直,并記作:與則稱如果,2,babaAOBbOBaOAOba,.,記作:的夾角,與叫做向量則角作,在空間任取一點量如圖,已知兩個非零向O OA AB Baabb2 2)兩個向量的數(shù)量積)兩個向量的數(shù)量積注意:注意:兩個向量的數(shù)量積是數(shù)量,而不是向量兩個向量的數(shù)量積是數(shù)量,而不是向量.零向量與任意向量的數(shù)量積等于零。零向量與任意向量的數(shù)量積等于

2、零。babababababababaaaOAaOA,cos,cos,即記作:的數(shù)量積,叫做向量,則已知空間兩個向量記作:的長度或模的長度叫做向量則有向線段設(shè)3 3)射影)射影eaeaABBAelABBABlBAlAllelaAB,cos,111111射影。方向上的正射影,簡稱或在上的在軸叫做向量,則上的射影在作點上的射影在點同方向的單位向量。作上與是,和軸已知向量BAleA1B1注意:是軸注意:是軸l l上的正射影上的正射影A A1 1B B1 1是一個可正可負(fù)的實數(shù),是一個可正可負(fù)的實數(shù),它的符號代表向量與它的符號代表向量與l l的方向的相對關(guān)系,大小代表的方向的相對關(guān)系,大小代表在在l l

3、上射影的長度。上射影的長度。4)4)空間向量的數(shù)量積性質(zhì)空間向量的數(shù)量積性質(zhì) aaababaeaaea2)30)2,cos) 1注意:注意:性質(zhì)性質(zhì)2 2)是證明兩向量垂直的依據(jù);)是證明兩向量垂直的依據(jù);性質(zhì)性質(zhì)3 3)是求向量的長度(模)的依據(jù);)是求向量的長度(模)的依據(jù);對于非零向量對于非零向量 ,有:,有:,a b 5)5)空間向量的數(shù)量積滿足的運算律空間向量的數(shù)量積滿足的運算律 注意:注意:分配律)交換律)()(3()2)()() 1cabacbaabbababa數(shù)量積不滿足結(jié)合律數(shù)量積不滿足結(jié)合律)()cbacba(二、二、 課堂練習(xí)課堂練習(xí)._,2,22,22. 1所夾的角為則

4、已知bababa)()4)()()3)()()()2)(0, 0, 01. 222222qpqpqpqpqpcbacbababa則若)判斷真假:ADFCBEACEFDCEFBDEFBAEFADABFEABCD)4()3()2(11. 3)(計算:的中點。、分別是、,點等于的每條邊和對角線長都如圖:已知空間四邊形三三、典型例題典型例題例例1:已知:已知M,N是平面是平面 內(nèi)的兩條相交直線,直線內(nèi)的兩條相交直線,直線L與與 的交點為的交點為B,且且LM,LN,求證:,求證:L 分析:由定義可知,只需證分析:由定義可知,只需證l l與平面內(nèi)與平面內(nèi)任意直線任意直線g g垂直。垂直。n nm mgg

5、gmnll l要證要證l l與與g g垂直,只需證垂直,只需證l lg g0 0而而m m,n n不平行,由共面向量定理知,不平行,由共面向量定理知,存在唯一的有序?qū)崝?shù)對存在唯一的有序?qū)崝?shù)對(x,y(x,y) )使得使得 g=xm+yng=xm+yn 要證要證l lg g0,0,只需只需l l g= g= xlxlm+ylm+yln n=0=0而而l lm m0 0 ,l ln n0 0故故 l lg g0 0三三、典型例題典型例題例例1:已知:已知M,N是平面是平面 內(nèi)的兩條相交直線,直線內(nèi)的兩條相交直線,直線L與與 的交點為的交點為B,且且LM,LN,求證:,求證:L n nm mgg g

6、mnll l證明:在證明:在 內(nèi)作不與內(nèi)作不與m m、n n重合的任一條重合的任一條直線直線g,g,在在l l、m m、n n、g g上取非零向上取非零向量量l l、m m、n n、g g,因,因m m與與n n相交,得向量相交,得向量m m、n n不平行,由共面向量定理不平行,由共面向量定理可知,存在唯一的有序?qū)崝?shù)對(可知,存在唯一的有序?qū)崝?shù)對(x x,y y),),使使 g g=x=xm m+y+yn n, , l lg g=x=xl lm m+y+yl ln n l lm m=0,=0,l ln n=0=0 l lg g=0=0 lglg lglg 這就證明了直線這就證明了直線l l垂直

7、于平面垂直于平面 內(nèi)的內(nèi)的任一條直線,所以任一條直線,所以ll 例例2:已知:在空間四邊形:已知:在空間四邊形OABC中,中,OABC,OBAC,求證:,求證:OCABACOBCBOA,證明:由已知A AB BC CO O 0)(0)(0,0OAOCOBOBOCOAACOBBCOA所以O(shè)AOBOCOBOBOAOCOA所以00)(0OCBAOCOBOAOCOBOCOA所以ABOC 所以鞏固練習(xí):利用向量知識證明三垂線定理利用向量知識證明三垂線定理aA AO OP P.,0,0,0,PAaPAaaOAaPOaPAOAyPOxPAyxOAPOOAPOaOAaOAaPOaPOPOaa即使有序?qū)崝?shù)對定理

8、可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量證明:在PAaOAaaPAOAPAPO求證:且內(nèi)的射影,在是的垂線,斜線,分別是平面已知:,例例3 3 如圖,已知線段在平面如圖,已知線段在平面 內(nèi),線段內(nèi),線段,線段,線段 ,線段,線段, ,如,如果,求、之間的距離。果,求、之間的距離。AC BDAB DD 30DBD ,ABaACBDbCDAB 解:由,可知解:由,可知. .由由 知知 . . AC ACAB 30DBD ,120CABD 22222222222|()|2222cos120CDCD CDCAABBDCAABBDCA ABCA BDAB BDbabbab 22CDa

9、bbab CABDD例例4 4已知在平行六面體中,已知在平行六面體中,, , ,求對角線的長。求對角線的長。ABCDA B C D 4AB 3 ,5 ,90 ,60ADAABADBAADAA AC DCBDABCA解:解:ACABADAA 22222222|()|2()4352(0107.5)85ACABADAAABADAAAB ADAB AAAD AA |85AC 1.1.已知線段已知線段 、在平面、在平面 內(nèi),線段內(nèi),線段,如果,求、之間的距離,如果,求、之間的距離. .ABBD BDAB AC ,ABaBDbACcCDcab CABD解:解:22222222|()|CDCAABBDCAA

10、BBDabc 222CDabc2.2.已知空間四邊形的每條邊和對角線的長都等于已知空間四邊形的每條邊和對角線的長都等于 ,點分別是邊的中點。,點分別是邊的中點。求證:。求證:。ABCDaMN、ABCD、,MNABMNCDNMABDC證明:因為證明:因為MNMAADDN 所以所以222()1110244AB MNAB MAADDNAB MAAB ADAB DNaaa MNAB同理,同理,MNCD 3.3.已知空間四邊形已知空間四邊形,求證:。,求證:。,OABCOBOCAOBAOC OABC OACB證明:證明:()| |cos| |cos| |cos| |cos0OA BCOA OCOBOA

11、OCOA OBOAOCOAOBOAOBOAOB OABC4.4.如圖,已知正方體,如圖,已知正方體, 和和 相交于相交于點,連結(jié)點,連結(jié) ,求證:。,求證:。ABCDA B C D CD DC OAOAOCD ODCBADABC已知空間四邊形的每條邊和對角線的長都等于已知空間四邊形的每條邊和對角線的長都等于, ,點分別是的中點,求下列向量的點分別是的中點,求下列向量的數(shù)量積:數(shù)量積:ABCDaEFG、 、ABADDC、(1) (2) (3) AB ACAD DBGF AC ;(4) (5) (6) .EF BCFG BAGE GF ;GFEABCD作業(yè)講評作業(yè)講評 課堂小結(jié)課堂小結(jié)1正確分清楚空間向量的夾角。正確分清楚空間向量的夾角。作業(yè):作業(yè):P106 4P106 4,2兩個向量的數(shù)量積的概念、性質(zhì)兩個向量的數(shù)量積的概念、性質(zhì)和計算方法。和計算方法。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!