《新版浙江版高考數(shù)學(xué)一輪復(fù)習(xí)(講練測(cè)): 專題5.2 平面向量基本定理及坐標(biāo)表示測(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版浙江版高考數(shù)學(xué)一輪復(fù)習(xí)(講練測(cè)): 專題5.2 平面向量基本定理及坐標(biāo)表示測(cè)(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1
2、 1
第02節(jié) 平面向量基本定理及坐標(biāo)表示
班級(jí)__________ 姓名_____________ 學(xué)號(hào)___________ 得分__________
一、選擇題(本大題共12小題,每小題5分,在每小題給出的四個(gè)選擇中,只有一個(gè)是符合題目要求的。)
1.已知平面向量,如果,那么( )
A. B. C.3 D.
3、
【答案】B
【解析】
由題意,得,則,則;故選B.
2.已知向量,若與共線,則( )
A. B. C.- D.
【答案】C
3.已知O、A、B是平面上的三個(gè)點(diǎn),直線AB上有一點(diǎn)C,滿足2+=,則=( )
A.2- B.-+2 C.- D.-+
【答案】A
【解析】∵依題,所以.故選A
4.已知,,如果∥,則實(shí)數(shù)的值等于( )
A. B. C. D.
【答案】D
【解析】由題意,
4、即.
5.設(shè)向量a=(1,x-1),b=(x+1,3),則“”是“a∥b”的( )
A.充分但不必要條件
B.必要但不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】A
【解析】依題意,a∥b?,所以“”是“a∥b”的充分但不必要條件.
6.已知向量p=(2,-3),q=(x,6),且p∥q,則|p+q|的值為( )
A. B.
C.5 D.13
【答案】B
【解析】由題意得2×6+3x=0?x=-4?|p+q|=|(2,-3)+(-4,6)|=|(-2,3)|=.
7.已知=(-2,1),=
5、(,),且// ,則=( )
A.1 B.2 C.3 D.5
【答案】A
8.如圖,正方形中,是的中點(diǎn),若,則( )
A. B. C. D.2
【答案】B
【解析】
設(shè)正方形邊長為,以為原點(diǎn)建立平面直角坐標(biāo)系,則,,依題意,,即,解得.
9.已知平面向量=(2,-1),=(1,1),=(-5,1),若∥,則實(shí)數(shù)k的值為( ?。?
6、 A.2 B. C. D.
【答案】B
【解析】∵=,=,
∴=,又
=,且∥,∴,解得:=.故選B.
10.已知△ABC的頂點(diǎn)分別為A(2,1),B(3,2),C(-3,-1),BC邊上的高為AD,則點(diǎn)D的坐標(biāo)為( )
A.(-,) B.(,-)
C.(,) D.(-,-)
【答案】C
11.已知是三角形所在平面內(nèi)一定點(diǎn),動(dòng)點(diǎn)滿足(),則點(diǎn)軌跡一定通過三角形的( )
A.內(nèi)心
7、B.外心 C.垂心 D.重心
【答案】
因此在三角形的中線上,故動(dòng)點(diǎn)一定過三角形的重心,故答案為D.
12.【20xx課標(biāo)3,理12】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= +,則+的最大值為
A.3 B.2 C. D.2
【答案】A
【解析】如圖所示,建立平面直角坐標(biāo)系
二、填空題(本大題共4小題,每小題5分,共20分。把答案填在題中的橫線上。)
13.【20xx山東,文11】已知向量a=(2,6),b= ,若a||b,則 .
【答案】
【解析】由a
8、||b可得
14.【20xx廣西河池課改聯(lián)盟】已知向量,則____________.
【答案】
【解析】.
15.已知點(diǎn),線段的中點(diǎn)的坐標(biāo)為.若向量與向量共線,則 _____________.
【答案】
【解析】
由題設(shè)條件,得,所以.因?yàn)橄蛄颗c向量共線,所以,所以.
16.設(shè),向量,若,則_______.
【答案】
三、解答題 (本大題共4小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)
17.已知向量
(1)若,求的值;
(2)若求的值。
【答案】(1)(2).
【解析】⑴因?yàn)?,所?
于是,故
⑵由知,
9、
因此,或
18.在平行四邊形中,E,G分別是BC,DC上的點(diǎn)且,.DE與BG交于點(diǎn)O.
(1)求;
(2)若平行四邊形的面積為21,求的面積.
【答案】(1);(2)
【解析】(1)設(shè),據(jù)題意可得,從而有.由三點(diǎn)共線,則存在實(shí)數(shù),使得,即
,由平面向量基本定理,解得,從而就有;
(2)由(1)可知,所以.
19.已經(jīng)向量,,點(diǎn)A.
(1)求線BD的中點(diǎn)M的坐標(biāo);
(2)若點(diǎn)P滿足,求和的值.
【答案】(1) (2),
(2),,
∵ ∴. 即,得.
20.在平面直角坐標(biāo)系中,給定,點(diǎn)為的中點(diǎn),點(diǎn)滿足,點(diǎn)滿足.
(1)求與的值;
(2)若三點(diǎn)坐標(biāo)分別為,求點(diǎn)坐標(biāo).
【答案】(1);(2)點(diǎn)的坐標(biāo)為.
【解析】(1)設(shè)
則
,
,
故
而
由平面向量基本定理得,解得