《新編高考數(shù)學二輪復習 規(guī)范答題示例8 直線與圓錐曲線的位置關系 理》由會員分享,可在線閱讀,更多相關《新編高考數(shù)學二輪復習 規(guī)范答題示例8 直線與圓錐曲線的位置關系 理(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、新編高考數(shù)學復習資料
規(guī)范答題示例8 直線與圓錐曲線的位置關系
典例8 (12分)在平面直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率為,且點在橢圓C上.
(1)求橢圓C的方程;
(2)設橢圓E:+=1,P為橢圓C上任意一點,過點P的直線y=kx+m交橢圓E于A,B兩點,射線PO交橢圓E于點Q.
①求的值;②求△ABQ面積的最大值.
審題路線圖 (1)―→
(2)①―→
②―→
―→
規(guī)范解答·分步得分
構建答題模板
解 (1)由題意知+=1.又=,
解得a2=4,b2=1.所以橢圓C的方程為+y2=1.2分
(2)由(1)知橢圓E的方程為+=1.
2、
①設P(x0,y0),=λ,由題意知Q(-λx0,-λy0).
因為+y=1,又+=1,即=1,
所以λ=2,即=2.5分
②設A(x1,y1),B(x2,y2).
將y=kx+m代入橢圓E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,
由Δ>0,可得m2<4+16k2,(*)
則x1+x2=-,x1x2=.所以|x1-x2|=.
因為直線y=kx+m與y軸交點的坐標為(0,m),
所以△OAB的面積S=|m||x1-x2|=
==2.8分
設=t,將y=kx+m代入橢圓C的方程,
可得(1+4k2)x2+8kmx+4m2-4=0,
由Δ≥0,可得m2
3、≤1+4k2.(**)
由(*)(**)可知0<t≤1,因此S=2=2,
故0
4、意變量條件的制約,檢查最值取得的條件.
評分細則 (1)第(1)問中,求a2-c2=b2關系式直接得b=1,扣1分;
(2)第(2)問中,求時,給出P,Q的坐標關系給1分;無“Δ>0”和“Δ≥0”者,每處扣1分;聯(lián)立方程消元得出關于x的一元二次方程給1分;根與系數(shù)的關系寫出后再給1分;求最值時,不指明最值取得的條件扣1分.
跟蹤演練8 (2017·全國Ⅰ)已知橢圓C:+=1(a>b>0),四點P1(1,1),P2(0,1),P3,P4中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為-1,證明:l過定
5、點.
(1)解 由于P3,P4兩點關于y軸對稱,故由題設知橢圓C經(jīng)過P3,P4兩點.
又由+>+知,橢圓C不經(jīng)過點P1,所以點P2在橢圓C上.
因此解得
故橢圓C的方程為+y2=1.
(2)證明 設直線P2A與直線P2B的斜率分別為k1,k2.
如果l與x軸垂直,設l:x=t,由題設知t≠0,且|t|<2,可得A,B的坐標分別為,,則k1+k2=-=-1,
得t=2,不符合題設.
從而可設l:y=kx+m(m≠1).
將y=kx+m代入+y2=1,
得(4k2+1)x2+8kmx+4m2-4=0,
由題設可知Δ=16(4k2-m2+1)>0.
設A(x1,y1),B(x2,y2),
則x1+x2=-,x1x2=.
而k1+k2=+
=+
=.
由題設k1+k2=-1,
故(2k+1)x1x2+(m-1)(x1+x2)=0.
即(2k+1)·+(m-1)·=0,
解得k=-.
當且僅當m>-1時,Δ>0,
于是l:y=-x+m,
即y+1=-(x-2),
所以l過定點(2,-1).