《新編高中數(shù)學(xué)人教A版選修11練習(xí):第1章 常用邏輯用語1.4.3 含解析》由會員分享,可在線閱讀,更多相關(guān)《新編高中數(shù)學(xué)人教A版選修11練習(xí):第1章 常用邏輯用語1.4.3 含解析(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、新編人教版精品教學(xué)資料
第一章 1.4 1.4.3
A級 基礎(chǔ)鞏固
一、選擇題
1.命題“存在一個無理數(shù),它的平方是有理數(shù)”的否定是( B )
A.任意一個有理數(shù),它的平方是有理數(shù)
B.任意一個無理數(shù),它的平方不是有理數(shù)
C.存在一個有理數(shù),它的平方是有理數(shù)
D.存在一個無理數(shù),它的平方不是有理數(shù)
[解析] 量詞“存在”否定后為“任意”,結(jié)論“它的平方是有理數(shù)”否定后為“它的平方不是有理數(shù)”,故選B.
2.命題“有些實數(shù)的絕對值是正數(shù)”的否定是( C )
A.?x∈R,|x|>0 B.?x0∈R,|x0|>0
C.?x∈R,|x|≤0 D.?x0∈R,|x0|
2、≤0
[解析] 由詞語“有些”知原命題為特稱命題,故其否定為全稱命題,因為命題的否定只否定結(jié)論,所以選C.
3.(2016·江西撫州高二檢測)已知命題p:?x∈R,x2+2x+2>0,則?p是( C )
A.?x0∈R,x+2x0+2<0
B.?x∈R,x2+2x+2<0
C.?x0∈R,x+2x0+2≤0
D.?x∈R,x2+2x+2≤0
[解析] ∵全稱命題的否定是特稱命題,∴選項C正確.
4.已知命題p:?x∈(0,),sin x=,則?p為( B )
A.?x∈(0,),sin x=
B.?x∈(0,),sin x≠
C.?x∈(0,),sin x≠
D.?x∈
3、(0,),sin x>
[解析] ?p表示命題p的否定,即否定命題p的結(jié)論,由“?x∈M,p(x)”的否定為“?x∈M,?p(x)”知選B.
5. 下列說法正確的是( A )
A.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
B.命題“?x∈R使得x2+2x+3<0”的否定是“?x∈R,x2+2x+3>0”
C.“x=-1”是“x2+2x+3=0”的必要不充分條件
D.命題p:“?x∈R,sin x+cos x≤”,則?p是真命題
[解析] a>1時,f(x)=logax為增函數(shù),f(x)=logax(a>0且a≠1)為增函數(shù)時,a>1
4、,∴A正確;“<”的否定為“≥”,故B錯誤;x=-1時,x2+2x+3≠0,x2+2x+3=0時,x無解,故C錯誤;∵sin x+cos x=sin (x+)≤恒成立,∴p為真命題,從而?p為假命題,∴D錯誤.
6.命題p:存在實數(shù)m,使方程x2+mx+1=0有實數(shù)根,則“非p”形式的命題是( C )
A.存在實數(shù)m,使得方程x2+mx+1=0無實根
B.不存在實數(shù)m,使得方程x2+mx+1=0有實根
C.對任意的實數(shù)m,方程x2+mx+1=0無實根
D.至多有一個實數(shù)m,使得方程x2+mx+1=0有實根
[解析] ?p:對任意實數(shù)m,方程x2+mx+1=0無實根,故選C.
二、
5、填空題
7.命題“存在x∈R,使得x2+2x+5=0”的否定是 任意x∈R,使得x2+2x+5≠0 .
[解析] 特稱命題的否定是全稱命題,將“存在”改為“任意”,“=”改為“≠”.
8.命題“過平面外一點與已知平面平行的直線在同一平面內(nèi)”的否定為__過平面外一點與已知平面平行的直線不都在同一平面內(nèi)__.
[解析] 原命題為全稱命題,寫其否定是要將全稱量詞改為存在量詞.
三、解答題
9.寫出下列命題的否定并判斷真假:
(1)不論m取何實數(shù),方程x2+x-m=0必有實數(shù)根;
(2)所有末位數(shù)字是0或5的整數(shù)都能被5整除;
(3)某些梯形的對角線互相平分;
(4)被8整除的數(shù)能
6、被4整除.
[解析] (1)這一命題可以表述為p:“對所有的實數(shù)m,方程x2+x-m=0都有實數(shù)根”,其否定是?p:“存在實數(shù)m,使得x2+x-m=0沒有實數(shù)根”,注意到當(dāng)Δ=1+4m<0,即m<-時,一元二次方程沒有實根,因此?p是真命題.
(2)命題的否定是:存在末位數(shù)字是0或5的整數(shù)不能被5整除,是假命題.
(3)命題的否定:任一個梯形的對角線都不互相平分,是真命題.
(4)命題的否定:存在一個數(shù)能被8整除,但不能被4整除,是假命題.
B級 素養(yǎng)提升
一、選擇題
1.(2015·浙江理)命題“?n∈N*,f(n)∈N* 且f(n)≤n”的否定形式是( D )
A.?n∈N
7、*, f(n)?N*且f(n)>n
B.?n∈N*, f(n)?N*或f(n)>n
C.?n0∈N*, f(n0)?N*且f(n0)>n0
D.?n0∈N*, f(n0)?N*或f(n0)>n0
[解析] 命題“?n∈N*,f(n)∈N*且f(n)≤n”
其否定為:“?n0∈N*,f(n0)?N*或f(n0)>n0”.
2.命題“?x∈R,ex>x2”的否定是( C )
A.不存在x∈R,使ex>x2
B.?x∈R,使ex”的否定為“≤”,故選C.
3.
8、已知命題“?a、b∈R,如果ab>0,則a>0”,則它的否命題是( B )
A.?a、b∈R,如果ab<0,則a<0
B.?a、b∈R,如果ab≤0,則a≤0
C.?a、b∈R,如果ab<0,則a<0
D.?a、b∈R,如果ab≤0,則a≤0
[解析] 條件ab>0的否定為ab≤0;
結(jié)論a>0的否定為a≤0,故選B.
4.(2016·江西撫州高二檢測)已知命題“?x∈R,2x2+(a-1)x+≤0”是假命題,則實數(shù)a的取值范圍是( B )
A.(-∞,1) B.(-1,3)
C.(3,+∞) D.(-3,1)
[解析] 由題意知,?x∈R,2x2+(a-1)x+>0,恒成
9、立,
∴Δ=(a-1)2-4=a2-2a-3<0,∴-1
10、≥0,故p是假命題,而存在x0=,使sin x0+cos x0=,故q是真命題,因此p∨q是真命題,?p是真命題.
7.已知命題p:m∈R,且m+1≤0,命題q:?x∈R,x2+mx+1>0恒成立,若p∧q為假命題且p∨q為真命題,則m的取值范圍是__m≤-2或-12或a<-2__.
[解析] 由于?x∈R
11、,使x2+ax+1<0,又二次函數(shù)f(x)=x2+ax+1開口向上,故Δ=a2-4>0,所以a>2或a<-2.
C級 能力提高
1.(2016·山東臨沂高二檢測)已知命題p:?a∈(0,b](b∈R且b>0),函數(shù)f(x)=sin (+)的周期不大于4π.
(1)寫出?p;
(2)當(dāng)?p是假命題時,求實數(shù)b的最大值.
[解析] (1)?p:?a0∈(0,b](b∈R,且b>0),
函數(shù)f(x)= sin(+)的周期大于4π.
(2)∵?p是假命題,∴p是真命題,
∴?a∈(0,b],≤4恒成立,
∴a≤2,∴b≤2.
故實數(shù)b的最大值是2.
2.(2016·安徽安慶高二檢測)已知命題p:?x0∈[-1,2],4x0>m.
(1)寫出?p;
(2)當(dāng)?p是真命題時,求實數(shù)m的取值范圍.
[解析] (1)?p:?x∈[-1,2],4x≤m.
(2)?p是真命題,即當(dāng)-1≤x≤2時,m≥(4x)max ,
∴m≥42=16,
∴實數(shù)m的取值范圍是[16,+∞).