《新編廣東省江門市高考數(shù)學(xué)一輪復(fù)習(xí) 專項檢測試題22 圓錐曲線與方程2》由會員分享,可在線閱讀,更多相關(guān)《新編廣東省江門市高考數(shù)學(xué)一輪復(fù)習(xí) 專項檢測試題22 圓錐曲線與方程2(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
圓錐曲線與方程02
三、解答題(本大題共6個小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟)
17.過點C(0,1)的橢圓的離心率為,橢圓與x軸交于兩點、,過點C的直線l與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.
(I) 當(dāng)直線l過橢圓右焦點時,求線段CD的長;
(Ⅱ)當(dāng)點P異于點B時,求證:為定值.
【答案】(Ⅰ)由已知得,解得,所以橢圓方程為.
橢圓的右焦點為,此時直線的方程為 ,代入橢圓方程得
,解得,代入直線的方程得 ,所以,
故.
(Ⅱ)當(dāng)直線與軸垂直時與題
2、意不符.
設(shè)直線的方程為.代入橢圓方程得.
解得,代入直線的方程得,
所以D點的坐標為.
又直線AC的方程為,又直線BD的方程為,聯(lián)立得
因此,又.
所以.
故為定值.
18.已知雙曲線C:的離心率為,且過點P(,1)求出此雙曲線C的方程;
【答案】
19.已知橢圓的中心在原點,焦點為F1,F(xiàn)2(0,),且離心率。
(I)求橢圓的方程;
(II) 直線l(與坐標軸不平行)與橢圓交于不同的兩點A、B,且線段AB中點的橫坐標為,求直線l的斜率的取值范圍。
【答案】(I)設(shè)橢圓方程為
解得 a=3,所
3、以b=1,故所求方程為
解得 又直線l與坐標軸不平行
故直線l斜率的取值范圍是{k∣}
20.在平面直角坐標系中,經(jīng)過點且斜率為的直線與橢圓有兩個不同的交點.
(1)求實數(shù)的取值范圍;
(2)設(shè)橢圓與軸正半軸,軸正半軸的交點分別為,是否存在常數(shù),使得向量共線?如果存在,求的值;如果不存在,請說明理由.
【答案】
(2)設(shè)則
由方程①,知,②
又,③
由得.
∴共線等價于將②③代入,解得
由①知故不存在符合題意的常數(shù).
21.若直線l:與拋物線交于A、B兩點,O點是坐標原點。
(1)當(dāng)m
4、=-1,c=-2時,求證:OA⊥OB;
(2)若OA⊥OB,求證:直線l恒過定點;并求出這個定點坐標。
(3)當(dāng)OA⊥OB時,試問△OAB的外接圓與拋物線的準線位置關(guān)系如何?證明你的結(jié)論。
【答案】設(shè)A(x1,y1)、B(x2,y2),由得
可知y1+y2=-2m y1y2=2c ∴x1+x2=2m2—2c x1x2= c2,
(1) 當(dāng)m=-1,c=-2時,x1x2 +y1y2=0 所以O(shè)A⊥OB.
(2) 當(dāng)OA⊥OB時,x1x2 +y1y2=0 于是c2+2c=0 ∴c=-2(c=0不合題意),此時,直線l:過定點(
5、2,0).
(3) 由題意AB的中點D(就是△OAB外接圓圓心)到原點的距離就是外接圓的半徑。
而(m2—c+)2-[(m2—c)2+m2 ]= 由(2)知c=-2
∴圓心到準線的距離大于半徑,故△OAB的外接圓與拋物線的準線相離。
22.如圖,在平面直角坐標系中,拋物線的頂點在原點,焦點為F(1,0).過拋物線在軸上方的不同兩點、作拋物線的切線、,與軸分別交于、兩點,且與交于點,直線與直線交于點.
(1) 求拋物線的標準方程;
(2) 求證:軸;
(3) 若直線與軸的交點恰為F(1,0),求證:直線過定點.
【答案】(1)設(shè)拋物線的標準方程為,
由題意,得,即.
所以拋物線的標準方程為.
(2)設(shè),,且,.
由(),得,所以.
所以切線的方程為,即.
整理,得, ①
且C點坐標為.
同理得切線的方程為,②
且D點坐標為.
由①②消去,得.
又直線的方程為,③
直線的方程為. ④
由③④消去,得.