《新編上海版高考數(shù)學(xué)分項(xiàng)匯編 專(zhuān)題14 推理與證明、新定義含解析理》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新編上海版高考數(shù)學(xué)分項(xiàng)匯編 專(zhuān)題14 推理與證明、新定義含解析理(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
專(zhuān)題14 推理與證明、新定義
一.基礎(chǔ)題組
1. 【20xx上海,理14】已知點(diǎn)O(0,0)、Q0(0,1)和點(diǎn)R0(3,1),記Q0R0的中點(diǎn)為P1,取Q0P1和P1R0中的一條,記其端點(diǎn)為Q1、R1,使之滿(mǎn)足(|OQ1|-2)(|OR1|-2)<0,記Q1R1的中點(diǎn)為P2,取Q1P2和P2R1中的一條,記其端點(diǎn)為Q2、R2,使之滿(mǎn)足(|OQ2|-2)(|OR2|-2)<0,依次下去,得到P1,P2,…,Pn,…,則______.
【答案】
2. (2009上海,理13)某地街道呈現(xiàn)東—西、南—北向的網(wǎng)格狀,相鄰街距都為1.兩街道相交的點(diǎn)稱(chēng)為格點(diǎn).若以互相垂直的兩條街道為軸建
2、立直角坐標(biāo)系,現(xiàn)有下述格點(diǎn)(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)為報(bào)刊零售點(diǎn).請(qǐng)確定一個(gè)格點(diǎn)(除零售點(diǎn)外)___________為發(fā)行站,使6個(gè)零售點(diǎn)沿街道到發(fā)行站之間路程的和最短.
【答案】(3,3)
3. 【2007上海,理9】若為非零實(shí)數(shù),則下列四個(gè)命題都成立:
① ② ③若,則
④若,則。則對(duì)于任意非零復(fù)數(shù),上述命題仍然成立的序號(hào)是。
4. 【2006上海,理10】如果一條直線(xiàn)與一個(gè)平面垂直,那么,稱(chēng)此直線(xiàn)與平面構(gòu)成一個(gè)“正交線(xiàn)面對(duì)”.在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線(xiàn)與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線(xiàn)面對(duì)”的個(gè)數(shù)
3、是 .
【答案】36
二.能力題組
1. 【20xx上海,理22】(本題滿(mǎn)分18分)本題共有3個(gè)小題,第1小題滿(mǎn)分3分,第2小題滿(mǎn)分5分,第3小題滿(mǎn)分10分.
若實(shí)數(shù)、、滿(mǎn)足,則稱(chēng)比遠(yuǎn)離.
(1)若比遠(yuǎn)離,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:比遠(yuǎn)離;
(3)已知函數(shù)的定義域.任取,等于和中遠(yuǎn)離的那個(gè)值.寫(xiě)出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
【答案】(1)(2)(3)
【點(diǎn)評(píng)】本題給人耳目一新的感覺(jué),問(wèn)題的表述比較陌生,提問(wèn)方式新穎,考生需要較強(qiáng)的數(shù)學(xué)理解和化歸能力,對(duì)考生的綜合數(shù)學(xué)能力要求較高.但認(rèn)真分
4、析一下就會(huì)有“他鄉(xiāng)遇故知”的感覺(jué)——函數(shù)與不等式的綜合.
2. 【2006上海,理16】如圖,平面中兩條直線(xiàn)和相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若、分別是M到直線(xiàn)和的距離,則稱(chēng)有序非負(fù)實(shí)數(shù)對(duì)(,)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)≥0,≥0,給出下列命題:
①若==0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且僅有1個(gè);
②若=0,且+≠0,則“距離坐標(biāo)”為(,)的點(diǎn)有且僅有2個(gè);
③若≠0,則“距離坐標(biāo)”為(,)的點(diǎn)有且僅有4個(gè).
上述命題中,正確命題的個(gè)數(shù)是 [答]( )
(A)0; (B)1; (C)2; (D)3.
5、
O
M(,)
【答案】D
3. 【2005上海,理22】(本題滿(mǎn)分18分)本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分8分,第3小題滿(mǎn)分6分.
在直角坐標(biāo)平面中,已知點(diǎn),,,…,,其中是正整數(shù).對(duì)平面上任一點(diǎn),記為關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),為關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn),……,為關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn).
(1) 求向量的坐標(biāo);
(2) 當(dāng)點(diǎn)在曲線(xiàn)上移動(dòng)時(shí),點(diǎn)的軌跡是函數(shù)的圖象,其中是以3為周期的周期函數(shù),且當(dāng)時(shí),,求以曲線(xiàn)為圖象的函數(shù)在的解析式;
(3)對(duì)任意偶數(shù),用表示向量的坐標(biāo)
【答案】(1)(2,4);(2);(3)
三.拔高題組
1. 【20xx上海,理22】(本題滿(mǎn)分16分)本
6、題共3個(gè)小題,第1小題滿(mǎn)分3分,第2小題滿(mǎn)分5分,第3小題滿(mǎn)分8分.
在平面直角坐標(biāo)系中,對(duì)于直線(xiàn):和點(diǎn)記若<0,則稱(chēng)點(diǎn)被直線(xiàn)分隔.若曲線(xiàn)C與直線(xiàn)沒(méi)有公共點(diǎn),且曲線(xiàn)C上存在點(diǎn)被直線(xiàn)分隔,則稱(chēng)直線(xiàn)為曲線(xiàn)C的一條分隔線(xiàn).
⑴ 求證:點(diǎn)被直線(xiàn)分隔;
⑵若直線(xiàn)是曲線(xiàn)的分隔線(xiàn),求實(shí)數(shù)的取值范圍;
⑶動(dòng)點(diǎn)M到點(diǎn)的距離與到軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求證:通過(guò)原點(diǎn)的直線(xiàn)中,有且僅有一條直線(xiàn)是E的分割線(xiàn).
【答案】(1)證明見(jiàn)解析;(2);(3)證明見(jiàn)解析.
【考點(diǎn)】新定義,直線(xiàn)與曲線(xiàn)的公共點(diǎn)問(wèn)題.
2. 【20xx上海,理23】已知平面上的線(xiàn)段l及點(diǎn)P.任取l上一點(diǎn)Q,線(xiàn)段PQ長(zhǎng)度的最
7、小值稱(chēng)為點(diǎn)P到線(xiàn)段l的距離,記作d(P,l).
(1)求點(diǎn)P(1,1)到線(xiàn)段l:x-y-3=0(3≤x≤5)的距離d(P,l);
(2)設(shè)l是長(zhǎng)為2的線(xiàn)段,求點(diǎn)的集合D={P|d(P,l)≤1}所表示的圖形面積;
(3)寫(xiě)出到兩條線(xiàn)段l1,l2距離相等的點(diǎn)的集合Ω={P|d(P,l1)=d(P,l2)},其中l(wèi)1=AB,l2=CD,A,B,C,D是下列三組點(diǎn)中的一組.
對(duì)于下列三種情形,只需選做一種,滿(mǎn)分分別是①2分,②6分,③8分;若選擇了多于一種的情形,則按照序號(hào)較小的解答計(jì)分.
①A(1,3),B(1,0),C(-1,3),D(-1,0)
②A(1,3),B(1,0),C(-1,3),D(-1,-2)
③A(0,1),B(0,0),C(0,0),D(2,0)
【答案】(1) ; (2) 4+π;(3)參考解析