《2020版高考理科數(shù)學(xué)人教版一輪復(fù)習(xí)課時(shí)跟蹤檢測(cè):十七 利用導(dǎo)數(shù)證明不等式 Word版含解析》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2020版高考理科數(shù)學(xué)人教版一輪復(fù)習(xí)課時(shí)跟蹤檢測(cè):十七 利用導(dǎo)數(shù)證明不等式 Word版含解析(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)跟蹤檢測(cè)課時(shí)跟蹤檢測(cè)(十七十七)利用導(dǎo)數(shù)證明不等式利用導(dǎo)數(shù)證明不等式1(2019唐山模擬唐山模擬)已知已知 f(x)12x2a2ln x,a0.(1)求函數(shù)求函數(shù) f(x)的最小值;的最小值;(2)當(dāng)當(dāng) x2a 時(shí),證明:時(shí),證明:f x f 2a x2a32a.解:解:(1)函數(shù)函數(shù) f(x)的定義域?yàn)榈亩x域?yàn)?0,),f(x)xa2x xa xa x.當(dāng)當(dāng) x(0,a)時(shí),時(shí),f(x)0,f(x)單調(diào)遞減;單調(diào)遞減;當(dāng)當(dāng) x(a,)時(shí),時(shí),f(x)0,f(x)單調(diào)遞增單調(diào)遞增所以當(dāng)所以當(dāng) xa 時(shí),時(shí),f(x)取得極小值,也是最小值,且取得極小值,也是最小值,且 f(a)12a2a2
2、ln a.(2)證明:由證明:由(1)知,知,f(x)在在(2a,)上單調(diào)遞增,上單調(diào)遞增,則所證不等式等價(jià)于則所證不等式等價(jià)于 f(x)f(2a)32a(x2a)0.設(shè)設(shè) g(x)f(x)f(2a)32a(x2a),則當(dāng)則當(dāng) x2a 時(shí),時(shí),g(x)f(x)32axa2x32a 2xa x2a 2x0,所以所以 g(x)在在(2a,)上單調(diào)遞增,上單調(diào)遞增,當(dāng)當(dāng) x2a 時(shí),時(shí),g(x)g(2a)0,即即 f(x)f(2a)32a(x2a)0,故故f x f 2a x2a32a.2(2018黃岡模擬黃岡模擬)已知函數(shù)已知函數(shù) f(x)ln xex(R)(1)若函數(shù)若函數(shù) f(x)是單調(diào)函數(shù),
3、求是單調(diào)函數(shù),求的取值范圍;的取值范圍;(2)求證:當(dāng)求證:當(dāng) 0 x1x2時(shí),時(shí),e1x2e1x11x2x1.解:解:(1)函數(shù)函數(shù) f(x)的定義域?yàn)榈亩x域?yàn)?0,),f(x)ln xex,f(x)xexxexx,函數(shù)函數(shù) f(x)是單調(diào)函數(shù),是單調(diào)函數(shù),f(x)0 或或 f(x)0 在在(0,)上恒成立,上恒成立,當(dāng)函數(shù)當(dāng)函數(shù) f(x)是單調(diào)遞減函數(shù)時(shí),是單調(diào)遞減函數(shù)時(shí),f(x)0,xexx0,即,即xex0,xexxex.令令(x)xex,則,則(x)x1ex,當(dāng)當(dāng) 0 x1 時(shí),時(shí),(x)0;當(dāng);當(dāng) x1 時(shí),時(shí),(x)0,則則(x)在在(0,1)上單調(diào)遞減,在上單調(diào)遞減,在(1,
4、)上單調(diào)遞增,上單調(diào)遞增,當(dāng)當(dāng) x0 時(shí),時(shí),(x)min(1)1e,1e.當(dāng)函數(shù)當(dāng)函數(shù) f(x)是單調(diào)遞增函數(shù)時(shí),是單調(diào)遞增函數(shù)時(shí),f(x)0,xexx0,即,即xex0,xexxex,由由得得(x)xex在在(0,1)上單調(diào)遞減上單調(diào)遞減,在在(1,)上單調(diào)遞增上單調(diào)遞增,又又(0)0,當(dāng)當(dāng) x時(shí),時(shí),(x)0,0.綜上,綜上,的取值范圍為的取值范圍為,1e 0,)(2)證明:由證明:由(1)可知,當(dāng)可知,當(dāng)1e時(shí),時(shí),f(x)1eln xex在在(0,)上單調(diào)遞減,上單調(diào)遞減,0 x1x2,f(x1)f(x2),即,即1eln x1ex11eln x2ex2,e1x2e1x1ln x1l
5、n x2.要證要證 e1x2e1x11x2x1,只需證,只需證 ln x1ln x21x2x1,即證,即證 lnx1x21x2x1,令令 tx1x2,t(0,1),則只需證,則只需證 ln t11t,令令 h(t)ln t1t1,則當(dāng),則當(dāng) 0t1 時(shí),時(shí),h(t)t1t20,h(t)在在(0,1)上單調(diào)遞減,又上單調(diào)遞減,又h(1)0,h(t)0,即,即 ln t11t,故原不等式得證,故原不等式得證3(2019貴陽(yáng)模擬貴陽(yáng)模擬)已知函數(shù)已知函數(shù) f(x)kxln x1(k0)(1)若函數(shù)若函數(shù) f(x)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù) k 的值;的值;(2)求證:當(dāng)求證:當(dāng) nN*時(shí),時(shí),112131nln(n1)解解:(1)f(x)kxln x1,f(x)k1xkx1x(x0,k0);當(dāng)當(dāng) 0 x1k時(shí)時(shí),f(x)0;當(dāng)當(dāng) x1k時(shí)時(shí),f(x)0.f(x)在在0,1k 上單調(diào)遞減上單調(diào)遞減,在在1k,上單調(diào)遞增上單調(diào)遞增,f(x)minf1k ln k,f(x)有且只有一個(gè)零點(diǎn)有且只有一個(gè)零點(diǎn),ln k0,k1.(2)證明:證明:由由(1)知知 xln x10,即即 x1ln x,當(dāng)且僅當(dāng)當(dāng)且僅當(dāng) x1 時(shí)取等號(hào)時(shí)取等號(hào),nN*,令令 xn1n,得得1nlnn1n,112131nln21ln32lnn1nln(n1),故故 112131nln(n1)