《東風(fēng)輕型貨車轉(zhuǎn)向系統(tǒng)設(shè)計DOC》由會員分享,可在線閱讀,更多相關(guān)《東風(fēng)輕型貨車轉(zhuǎn)向系統(tǒng)設(shè)計DOC(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、畢業(yè)設(shè)計(論文)開題報告
學(xué)生姓名
鄭蕊
系部
汽車工程系
專業(yè)、班級
車輛07—6班
指導(dǎo)教師姓名
姚佳巖
職稱
副教授
從事
專業(yè)
車輛工程
是否外聘
□是■否
題目名稱
東風(fēng)輕型貨車轉(zhuǎn)向系統(tǒng)設(shè)計
一、課題研究現(xiàn)狀、選題目的和意義
作為汽車的一個重要組成部分, 汽車轉(zhuǎn)向系統(tǒng)是決定汽車主動安全性的關(guān)鍵總成, 如何設(shè)計汽車的轉(zhuǎn)向特性, 使汽車具有良好的操縱性能, 始終是各汽車生產(chǎn)廠家和科研機構(gòu)的重要研究課題。特別是在車輛高速化、駕駛?cè)藛T非職業(yè)化、車流密集化的今天, 針對更多不同水平的駕駛?cè)巳? 汽車的操縱設(shè)計顯得尤為重要。汽車轉(zhuǎn)向系統(tǒng)經(jīng)歷了純機械式轉(zhuǎn)向系統(tǒng)
2、、液壓助力轉(zhuǎn)向系統(tǒng)、電動助力轉(zhuǎn)向系統(tǒng)3 個基本發(fā)展階段。1)純機械式轉(zhuǎn)向系統(tǒng),由于采用純粹的機械解決方案, 為了產(chǎn)生足夠大的轉(zhuǎn)向扭矩需要使用大直徑的轉(zhuǎn)向盤, 這樣一來, 占用駕駛室的空間很大, 整個機構(gòu)顯得比較笨拙, 駕駛員負擔(dān)較重, 特別是重型汽車由于轉(zhuǎn)向阻力較大,單純靠駕駛員的轉(zhuǎn)向力很難實現(xiàn)轉(zhuǎn)向, 這就大大限制了其使用范圍。但因結(jié)構(gòu)簡單、工作可靠、造價低廉, 目前在一部分轉(zhuǎn)向操縱力不大、對操控性能要求不高的微型轎車、農(nóng)用車上仍有使用。2)液壓助力轉(zhuǎn)向系統(tǒng),1953 年通用汽車公司首次使用了液壓助力轉(zhuǎn)向系統(tǒng), 此后該技術(shù)迅速發(fā)展, 使得動力轉(zhuǎn)向系統(tǒng)在體積、功率消耗和價格等方面都取得了很大的進
3、步。80 年代后期, 又出現(xiàn)了變減速比的液壓動力轉(zhuǎn)向系統(tǒng)。在接下來的數(shù)年內(nèi), 動力轉(zhuǎn)向系統(tǒng)的技術(shù)革新差不多都是基于液壓轉(zhuǎn)向系統(tǒng), 比較有代表性的是變流量泵液壓動力轉(zhuǎn)向系統(tǒng)( Variable Displacement Power Steering Pump) 和電動液壓助力轉(zhuǎn)向( Electric Hydraulic PowerSteering, 簡稱EHPS) 系統(tǒng)。變流量泵助力轉(zhuǎn)向系統(tǒng)在汽車處于比較高的行駛速度或者不需要轉(zhuǎn)向的情況下, 泵的流量會相應(yīng)地減少, 從而有利于減少不必要的功耗。電動液壓轉(zhuǎn)向需要全套設(shè)計請聯(lián)系Q Q1537693694系統(tǒng)采用電動機驅(qū)動轉(zhuǎn)向泵, 由于電機的轉(zhuǎn)速可調(diào),
4、 可以即時關(guān)閉, 所以也能夠起到降低功耗的功效。液壓助力轉(zhuǎn)向系統(tǒng)使駕駛室變得寬敞, 布置更方便, 降低了轉(zhuǎn)向操縱力, 也使轉(zhuǎn)向系統(tǒng)更為靈敏。由于該類轉(zhuǎn)向系統(tǒng)技術(shù)成熟、能提供大的轉(zhuǎn)向操縱助力, 目前在部分乘用車、大部分商用車特別是重型車輛上廣泛應(yīng)用。但是液壓助力轉(zhuǎn)向系統(tǒng)在系統(tǒng)布置、安裝、密封性、操縱靈敏度、能量消耗、磨損與噪聲等方面存在不足。3)汽車電動助力轉(zhuǎn)向系統(tǒng)(EPS),EPS 在日本最先獲得實際應(yīng)用, 1988 年日本鈴木公司首次開發(fā)出一種全新的電子控制式電動助力轉(zhuǎn)向系統(tǒng), 并裝在其生產(chǎn)的Cervo 車上, 隨后又配備在Alto 上。此后, 電動助力轉(zhuǎn)向技術(shù)得到迅速發(fā)展, 其應(yīng)用范圍已經(jīng)
5、從微型轎車向大型轎車和客車方向發(fā)展。日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司, 美國的Delphi公司, 英國的Lucas 公司, 德國的ZF 公司, 都研制出了各自的EPS。EPS 的助力形式也從低速范圍助力型向全速范圍助力型發(fā)展, 并且其控制形式與功能也進一步加強。日本早期開發(fā)的EPS 僅低速和停車時提供助力, 高速時EPS 將停止工作。新一代的EPS 則不僅在低速和停車時提供助力, 而且還能在高速時提高汽車的操縱穩(wěn)定性。隨著電子技術(shù)的發(fā)展, EPS 技術(shù)日趨完善, 并且其成本大幅度降低, 為此其應(yīng)用范圍將越來越大。4)線控轉(zhuǎn)向系統(tǒng),線控轉(zhuǎn)向系統(tǒng)( Steering by Wire-
6、SBW) 是更新一代的汽車電子轉(zhuǎn)向系統(tǒng), 線控轉(zhuǎn)向系統(tǒng)與上述各類轉(zhuǎn)向系統(tǒng)的根本區(qū)別就是取消了轉(zhuǎn)向盤和轉(zhuǎn)向輪之間的機械連接。該系統(tǒng)具有兩個電機:路感電機和驅(qū)動電機。路感電機安裝在轉(zhuǎn)向柱上, 控制器根據(jù)汽車轉(zhuǎn)向工況控制路感電機產(chǎn)生合適的轉(zhuǎn)矩, 向駕駛員提供模擬路面信息。驅(qū)動電機安裝在齒條上, 汽車的轉(zhuǎn)向阻力完全由驅(qū)動電機來克服, 轉(zhuǎn)向盤只是作為轉(zhuǎn)向系統(tǒng)的一個轉(zhuǎn)角信號輸入裝置。線控轉(zhuǎn)向系統(tǒng)能夠提高汽車被動安全性, 有利于汽車設(shè)計制造, 并能大大提高汽車的乘坐舒適性。但是由于轉(zhuǎn)向盤和轉(zhuǎn)向柱之間無機械連接, 生成讓駕駛員能夠感知汽車實際行駛狀態(tài)和路面狀況的“路感”比較困難; 且電子器件的可靠性難以保證。
7、所以線控轉(zhuǎn)向系統(tǒng)目前處于研究階段, 只配備在一些概念汽車上。汽車轉(zhuǎn)向技術(shù)的發(fā)展趨勢助力轉(zhuǎn)向系統(tǒng)經(jīng)過幾十年的發(fā)展, 技術(shù)日趨完善。今后, 電動助力轉(zhuǎn)向系統(tǒng)將進一步成熟, 線控轉(zhuǎn)向系統(tǒng)將成為我們需要全套設(shè)計請聯(lián)系Q Q1537693694研究的努力方向。
純機械式轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)簡單、工作可靠、造價低廉, 目前在一部分轉(zhuǎn)向操縱力不大、對操控性能要求不高的微型轎車、農(nóng)用車上仍有使用;液壓助力轉(zhuǎn)向系統(tǒng)技術(shù)成熟、能提供大的轉(zhuǎn)向操縱助力, 在重型車輛上廣泛應(yīng)用; EPS 以其特有的優(yōu)越性而得到青睞, 它代表著未來動力轉(zhuǎn)向技術(shù)的發(fā)展方向, EPS 將作為標準配置裝備到汽車上, 未來一段時間在動力轉(zhuǎn)向領(lǐng)域占據(jù)主
8、導(dǎo)地位; 而SBW 由于有利于提高汽車被動安全性、有利于汽車設(shè)計制造、有利于提高汽車乘坐舒適性和汽車操控穩(wěn)定性等原因, 將成為動力轉(zhuǎn)向系統(tǒng)的發(fā)展方向。
汽車的轉(zhuǎn)向系統(tǒng)的性能是汽車的主要性能之一,直接影響到汽車的操縱穩(wěn)定性,它對于確保車輛的安全行駛、減少交通事故以及保護駕駛員的人身安全、改善駕駛員的工作條件起著重要的作用。如何合理地設(shè)計轉(zhuǎn)向系統(tǒng),使汽車具有良好的操作性能,始終是設(shè)計人員的重要研究課題。在本次畢業(yè)設(shè)計中選擇的是機械式轉(zhuǎn)向系統(tǒng),選擇的是能將滑動摩擦通過鋼球轉(zhuǎn)變成滾動摩擦的循環(huán)球式轉(zhuǎn)向器。
二、 設(shè)計(論文)的基本內(nèi)容、擬解決的主要問題
轉(zhuǎn)向系設(shè)計
9、的基本內(nèi)容:
本設(shè)計的題目是輕型貨車轉(zhuǎn)向系的設(shè)計。以循環(huán)球式轉(zhuǎn)向器的設(shè)計為中心,一是汽車總體構(gòu)架參數(shù)對汽車轉(zhuǎn)向的影響;二是機械轉(zhuǎn)式向器的選擇;三是轉(zhuǎn)向傳動機構(gòu)的選擇;四是梯形結(jié)構(gòu)設(shè)計。因此本設(shè)計在考慮上述要求和因素的基礎(chǔ)上需要全套設(shè)計請聯(lián)系Q Q1537693694研究利用轉(zhuǎn)向盤的旋轉(zhuǎn)帶動傳動機構(gòu),通過萬向節(jié)帶動蝸桿軸旋轉(zhuǎn),蝸桿軸與扇形齒輪嚙合,通過安裝在扇形軸上的轉(zhuǎn)向臂向轉(zhuǎn)向拉桿機構(gòu)傳遞操作力,實現(xiàn)轉(zhuǎn)向。
(1) 汽車轉(zhuǎn)向系方案的設(shè)計
(2) 汽車轉(zhuǎn)向器方案的設(shè)計
(3) 汽車轉(zhuǎn)向傳動機構(gòu)的設(shè)計
(4) 汽車轉(zhuǎn)向系的設(shè)計計算
(5)
10、 用CAD畫裝配圖和零件圖,合計3張零號圖
擬解決的主要問題:
此次設(shè)計針對的是與非獨立懸架相匹配的整體式兩輪轉(zhuǎn)向機構(gòu)。在輕型貨車轉(zhuǎn)向系統(tǒng)設(shè)計中,主要是對轉(zhuǎn)向器和轉(zhuǎn)向梯形的設(shè)計,因此,利用相關(guān)汽車設(shè)計和連桿機構(gòu)運動學(xué)的知識,首先對汽車總體參數(shù)進行確定,在此基礎(chǔ)上,對轉(zhuǎn)向器,轉(zhuǎn)向傳動機構(gòu)進行選擇,接著再對轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)(主要是轉(zhuǎn)向梯形)進行設(shè)計,最后,利用軟件AUTOCAD完成其設(shè)計圖紙。
轉(zhuǎn)向器在設(shè)計中選用的是循環(huán)球式齒條齒扇轉(zhuǎn)向器,在對轉(zhuǎn)向器的設(shè)計中,包括了螺桿—鋼球—螺母傳動副的設(shè)計和齒條—齒扇傳動副的設(shè)計,前者是基于參照同類汽車,確定出鋼球中心距,設(shè)計出一系列的尺寸,而后
11、者則是根據(jù)汽車前軸的載荷來確定出齒扇模數(shù),再由此設(shè)計出所有參數(shù)的。
轉(zhuǎn)向梯形的設(shè)計選用的是整體式轉(zhuǎn)向梯形,在設(shè)計中借鑒同類汽車轉(zhuǎn)向梯形設(shè)計的經(jīng)驗尺寸對轉(zhuǎn)向梯形進行尺寸初選。再通過對轉(zhuǎn)向內(nèi)輪實際達到的最大偏轉(zhuǎn)角時與轉(zhuǎn)向外輪理想最大偏轉(zhuǎn)角度的差值的檢驗,和作為一個四桿機構(gòu)對其最小傳動角的檢驗,來判定轉(zhuǎn)向梯形的設(shè)計是否符合基本要求。
三、技術(shù)路線(研究方法)
完成說明書的編寫
完成CAD繪圖
轉(zhuǎn)向系的選擇
轉(zhuǎn)向系主要性能參數(shù)選擇
轉(zhuǎn)向系結(jié)構(gòu)元件
整體式轉(zhuǎn)向梯形結(jié)構(gòu)優(yōu)化設(shè)計
轉(zhuǎn)向器的結(jié)構(gòu)型式選擇及其設(shè)計計算
轉(zhuǎn)向系的設(shè)計計算
轉(zhuǎn)向傳動機構(gòu)的選擇
轉(zhuǎn)向梯形的選擇
汽
12、車轉(zhuǎn)向系方案的選擇
輪胎的確定
發(fā)動機的確定
汽車主要參數(shù)的確定
汽車形式的確定
汽車總體參數(shù)的確定
開題報告
調(diào)查研究
四、進度安排
(1) 收集資料,調(diào)研,撰寫開題報告 第一周
(2) 周四交開題報告,實習(xí)了解轉(zhuǎn)向系統(tǒng)的構(gòu)造 第二周
(3) 完成各參數(shù)的設(shè)計、計算和校核工作,至少應(yīng)有裝配圖的草圖 第三周-第七周
(4) 中期檢查,畫裝配圖和零件圖 第八周
(5) 畫裝配圖和零件圖,編寫說明書
13、 第九周-第十一周
(6) 交畢業(yè)設(shè)計說明書和裝配圖、零件圖,修改 第十二周
(7) 畢業(yè)設(shè)計指導(dǎo)教師審核 第十三周
(8) 畢業(yè)設(shè)計修改 第十四周
(9) 畢業(yè)設(shè)計評閱教師評閱或預(yù)審 第十五周
(10) 畢業(yè)設(shè)計修改
14、 第十六周
(11) 畢業(yè)設(shè)計答辯 第十七周
五、參考文獻
[1] 劉惟信.汽車設(shè)計[M].北京:清華大學(xué)出版社,2001
[2] 陳家瑞.汽車構(gòu)造[M].北京:人民交通大學(xué)出版社,2008
[3] 王望予.汽車設(shè)計[M].北京:機械工業(yè)出版社,2008
[4] 李慶華.材料力學(xué)[M].成都:西南交通大學(xué)出版社,2006
[5] 余志生.汽車理論[M].北京:機械工業(yè)出版社,2008
[6] 劉朝儒.機械制圖[M].北京:高等教育出版社,2001
[7] 汽
15、車工程手冊編輯委員會. 汽車工程手冊[M]:基礎(chǔ)篇.北京:人民交通出版社,2001
[8] 汽車工程手冊編輯委員會. 汽車工程手冊[M]:設(shè)計篇.北京:人民交通出版社,2001
[9] 季學(xué)武.動力轉(zhuǎn)向系統(tǒng)的發(fā)展與節(jié)能[J].世界汽車,2001,10
[10] 徐梁征,肖成永等.汽車列車系統(tǒng)穩(wěn)定性分析及控制系統(tǒng)仿真[J].計算機仿真,2003,12
[11] 宋曉琳,徐成,殷其華.汽車轉(zhuǎn)向器總成性能試驗數(shù)據(jù)處理系統(tǒng)[J].汽車科技,2002,5
[12] 丁禮燈,楊家軍等.汽車動力轉(zhuǎn)向器轉(zhuǎn)向力矩的分析與計算[J].三峽大學(xué)學(xué)報 ( 自然 科學(xué)版),2001,3
[13] 王玉梅
16、,岳靜等.微型汽車循環(huán)球式轉(zhuǎn)向器齒扇設(shè)計參數(shù)分析[J].長春工業(yè)大學(xué)學(xué)報.2006,26(2):145~147
[14] 鐘兵.低速汽車轉(zhuǎn)向系設(shè)計[J].山東五征集團汽車研究所.2006,4(3):54~55
[15] 邱峰.汽車轉(zhuǎn)向系統(tǒng)的發(fā)展趨勢與關(guān)鍵技術(shù)[J].輕型汽車技術(shù),2001,5
[16] Masahiko Hurishige, Takayuki Kifuku, Noriyuki Inoue. A Control Strategy to Reduce Steering Torque for Stationary Vehicles Equipped With EPS. Mitsubishi Electric Cop
[17] Zuo Li, Wu Wenjiang, Study on Stability of Electric Power Steering System
[18] Moriwaki, K,On automatic motion control with optimization,SICE 2003 Annual Conference
六、備注
指導(dǎo)教師意見:
簽字: 年 月 日