影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

新編高考數(shù)學一輪復習學案訓練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學案 理 北師大版

上傳人:沈*** 文檔編號:68828456 上傳時間:2022-04-04 格式:DOC 頁數(shù):6 大?。?69KB
收藏 版權申訴 舉報 下載
新編高考數(shù)學一輪復習學案訓練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學案 理 北師大版_第1頁
第1頁 / 共6頁
新編高考數(shù)學一輪復習學案訓練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學案 理 北師大版_第2頁
第2頁 / 共6頁
新編高考數(shù)學一輪復習學案訓練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學案 理 北師大版_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學一輪復習學案訓練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學案 理 北師大版》由會員分享,可在線閱讀,更多相關《新編高考數(shù)學一輪復習學案訓練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學案 理 北師大版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第四節(jié) 數(shù)列求和 [考綱傳真] (教師用書獨具)1.掌握等差、等比數(shù)列的前n項和公式.2.掌握特殊的非等差、等比數(shù)列的幾種常見的求和方法. (對應學生用書第87頁) [基礎知識填充] 1.公式法 (1)等差數(shù)列的前n項和公式: Sn==na1+d; (2)等比數(shù)列的前n項和公式: Sn= 2.幾種數(shù)列求和的常用方法 (1)分組求和法:一個數(shù)列的通項公式是由若干個等差或等比或可求和的數(shù)列組成的,則求和時可用分組求和法,分別求和而后相加減. (2)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求得前n項和.裂項時常用的三種變

2、形: ①=-; ②=; ③=-. (3)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應項之積構成的,那么求這個數(shù)列的前n項和即可用錯位相減法求解. (4)倒序相加法:如果一個數(shù)列{an}與首末兩端等“距離”的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項和即可用倒序相加法求解. (5)并項求和法:一個數(shù)列的前n項和中,可兩兩結合求解,則稱之為并項求和.形如an=(-1)nf(n)類型,可采用兩項合并求解. 例如,Sn=1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [基本能力自測]

3、 1.(思考辨析)判斷下列結論的正誤.(正確的打“√”,錯誤的打“×”) (1)如果數(shù)列{an}為等比數(shù)列,且公比不等于1,則其前n項和Sn=.(  ) (2)當n≥2時,=.(  ) (3)求Sn=a+2a2+3a3+…+nan之和時只要把上式等號兩邊同時乘以a即可根據(jù)錯位相減法求得.(  ) (4)如果數(shù)列{an}是周期為k(k為大于1的正整數(shù))的周期數(shù)列,那么Skm=mSk.(  ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改編)數(shù)列{an}的前n項和為Sn,若an=,則S5等于(  ) A.1      B. C. D. B [∵an==-, ∴

4、S5=a1+a2+…+a5=1-+-+…-=.] 3.數(shù)列{an}的通項公式是an=,前n項和為9,則n等于(  ) A.9 B.99 C.10 D.100 B [∵an==-,∴Sn=a1+a2+…+an=(-)+(-)+…+(-)+(-)=-1,令-1=9,得n=99,故選B.] 4.數(shù)列{an}的前n項和為Sn,已知Sn=1-2+3-4+…+(-1)n-1·n,則S17=________. 9 [S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.] 5.若數(shù)列{

5、an}的通項公式為an=2n+2n-1,則數(shù)列{an}的前n項和Sn=__________. 2n+1-2+n2 [Sn=+=2n+1-2+n2.] (對應學生用書第87頁) 分組轉化求和  (20xx·北京高考)已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4. (1)求{an}的通項公式; (2)設cn=an+bn,求數(shù)列{cn}的前n項和. [解] (1)設等比數(shù)列{bn}的公比為q, 則q===3, 所以b1==1,b4=b3q=27,所以bn=3n-1(n=1,2,3,…). 設等差數(shù)列{an}的公差為d.

6、 因為a1=b1=1,a14=b4=27, 所以1+13d=27,即d=2. 所以an=2n-1(n=1,2,3,…). (2)由(1)知an=2n-1,bn=3n-1. 因此cn=an+bn=2n-1+3n-1. 從而數(shù)列{cn}的前n項和 Sn=1+3+…+(2n-1)+1+3+…+3n-1 =+=n2+. [規(guī)律方法] 分組轉化法求和的常見類型 (1)若an =bn±cn,且{bn},{cn}為等差或等比數(shù)列,則可采用分組求和法求{an}的前n項和. (2)通項公式為an=的數(shù)列,其中數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列,可采用分組求和法求和. 易錯警示:注

7、意在含有字母的數(shù)列中對字母的分類討論. [跟蹤訓練] (20xx·南昌一模)已知等差數(shù)列{an}的前n項和為Sn,且a1=1,S3+S4=S5. (1)求數(shù)列{an}的通項公式; (2)令bn=(-1)n-1an,求數(shù)列{bn}的前2n項和T2n. [解] (1)設等差數(shù)列{an}的公差為d, 由S3+S4=S5可得a1+a2+a3=a5,即3a2=a5, ∴3(1+d)=1+4d,解得d=2. ∴an=1+(n-1)×2=2n-1. (2)由(1)可得bn=(-1)n-1·(2n-1). ∴T2n=1-3+5-7+…+(2n-3)-(2n-1) =(-2)×n=-2n.

8、 裂項相消法求和  (20xx·全國卷Ⅲ)設數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n. (1)求{an}的通項公式; (2)求數(shù)列的前n項和. [解] (1)因為a1+3a2+…+(2n-1)an=2n,故當n≥2時, a1+3a2+…+(2n-3)an-1=2(n-1), 兩式相減得(2n-1)an=2, 所以an=(n≥2). 又由題設可得a1=2,滿足上式, 所以{an}的通項公式為an=. (2)記的前n項和為Sn. 由(1)知==-, 則Sn=-+-+…+-=. [規(guī)律方法] 利用裂項相消法求和的注意事項,(1)抵消后并不一

9、定只剩下第一項和最后一項,也有可能前面剩兩項,后面也剩兩項.,(2)消項規(guī)律:消項后前邊剩幾項,后邊就剩幾項,前邊剩第幾項,后邊就剩倒數(shù)第幾項.,(3)將通項裂項后,有時需要調整前面的系數(shù),使裂開的兩項之差和系數(shù)之積與原通項相等.如:若{an}是等差數(shù)列,則=,=. [跟蹤訓練] (20xx·石家莊一模)已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項和S10=100. (1)求數(shù)列{an}的通項公式; (2)若bn=,求數(shù)列{bn}的前n項和. 【導學號:79140181】 [解] (1)由已知得 解得 所以數(shù)列{an}的通項公式為an=1+2(n-1)=2n-1

10、. (2)bn==, 所以Tn= ==. 錯位相減法求和  (20xx·山東高考)已知{an}是各項均為正數(shù)的等比數(shù)列,且a1+a2=6,a1a2=a3. (1)求數(shù)列{an}的通項公式; (2){bn}為各項非零的等差數(shù)列,其前n項和為Sn.已知S2n+1=bnbn+1,求數(shù)列的前n項和Tn. [解] (1)設{an}的公比為q, 由題意知a1(1+q)=6,aq=a1q2, 又an>0,由以上兩式聯(lián)立方程組解得a1=2,q=2, 所以an=2n. (2)由題意知S2n+1==(2n+1)bn+1, 又S2n+1=bnbn+1,bn+1≠0, 所以bn

11、=2n+1. 令cn=,則cn=. 因此Tn=c1+c2+…+cn =+++…++, 又Tn=+++…++, 兩式相減得 Tn=+-, 所以Tn=5-. [規(guī)律方法] (1)錯位相減法求和的適用范圍 如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項和時,可采用錯位相減法求和. (2)錯位相減法求和的注意事項 ①在寫出“Sn”與“qSn”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“Sn-qSn”的表達式. ②在應用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應分公比等于1和不等于1兩種情況求解. [跟蹤訓練] (20xx·石家莊

12、質檢(二))已知等差數(shù)列{an}的前n項和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N+). 【導學號:79140182】 (1)求m的值; (2)若數(shù)列{bn}滿足=log2bn(n∈N+),求數(shù)列{(an+6)·bn}的前n項和. [解] (1)由已知得am=Sm-Sm-1=4, 且am+1+am+2=Sm+2-Sm=14, 設數(shù)列{an}的公差為d,則2am+3d=14, ∴d=2. 由Sm=0,得ma1+×2=0,即a1=1-m, ∴am=a1+(m-1)×2=m-1=4, ∴m=5. (2)由(1)知a1=-4,d=2,∴an=2n-6, ∴n-3=log2bn,得bn=2n-3. ∴(an+6)·bn=2n×2n-3=n×2n-2. 設數(shù)列{(an+6)·bn}的前n項和為Tn, ∴Tn=1×2-1+2×20+…+(n-1)×2n-3+n×2n-2,?、? 2Tn=1×20+2×21+…+(n-1)×2n-2+n×2n-1, ② ①-②,得-Tn=2-1+20+…+2n-2-n×2n-1 =-n×2n-1 =2n-1--n×2n-1, ∴Tn=(n-1)·2n-1+(n∈N+).

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!