影音先锋男人资源在线观看,精品国产日韩亚洲一区91,中文字幕日韩国产,2018av男人天堂,青青伊人精品,久久久久久久综合日本亚洲,国产日韩欧美一区二区三区在线

【創(chuàng)新方案】(人教通用版)2016高考數(shù)學(xué) 五年高考真題分類匯編 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 理

上傳人:e****s 文檔編號(hào):73797906 上傳時(shí)間:2022-04-12 格式:DOC 頁數(shù):131 大小:1.88MB
收藏 版權(quán)申訴 舉報(bào) 下載
【創(chuàng)新方案】(人教通用版)2016高考數(shù)學(xué) 五年高考真題分類匯編 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 理_第1頁
第1頁 / 共131頁
【創(chuàng)新方案】(人教通用版)2016高考數(shù)學(xué) 五年高考真題分類匯編 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 理_第2頁
第2頁 / 共131頁
【創(chuàng)新方案】(人教通用版)2016高考數(shù)學(xué) 五年高考真題分類匯編 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 理_第3頁
第3頁 / 共131頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【創(chuàng)新方案】(人教通用版)2016高考數(shù)學(xué) 五年高考真題分類匯編 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新方案】(人教通用版)2016高考數(shù)學(xué) 五年高考真題分類匯編 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 理(131頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、五年高考真題分類匯編:函數(shù)、導(dǎo)數(shù)及其應(yīng)用 一.選擇題 1.(2013·湖南高考理)函數(shù)f(x)=2ln x的圖象與函數(shù)g(x)=x2-4x+5的圖象的交點(diǎn)個(gè)數(shù)為 (  ) A.3 B.2 C.1 D.0 【解析】選B 本小題主要考查二次函數(shù)和對(duì)數(shù)函數(shù)的圖象及性質(zhì),考查對(duì)數(shù)值的取值范圍的探究及數(shù)形結(jié)合思想.由已知g(x)=(x-2)2+1,所以其頂點(diǎn)為(

2、2,1),又f(2)=2ln 2∈(1,2),可知點(diǎn)(2,1)位于函數(shù)f(x)=2ln x圖象的下方,故函數(shù)f(x)=2ln x的圖象與函數(shù)g(x)=x2-4x+5的圖象有2個(gè)交點(diǎn). 2.(2013·福建高考理)設(shè)函數(shù)f(x)的定義域?yàn)镽,x0(x0≠0)是f(x)的極大值點(diǎn),以下結(jié)論一定正確的是 (  ) A.?x∈R,f(x)≤f(x0) B.-x0是f(-x)的極小值點(diǎn) C.-x0是-f(x)的極小值點(diǎn) D.-x0是-f(-x)的極小值點(diǎn) 【解析】選D 

3、本題考查函數(shù)的極值點(diǎn)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),意在考查考生的數(shù)形結(jié)合能力.取函數(shù)f(x)=x3-x,則x=-為f(x)的極大值點(diǎn),但f(3)>ff(x)=-(x-1)2,則x=1是f(x)的極大值點(diǎn),但-1不是f(-x)的極小值點(diǎn),排除B;-f(x)=(x-1)2,-1不是-f(x)的極小值點(diǎn),排除C.故選D. 3.(2013·福建高考理)設(shè)S,T是R的兩個(gè)非空子集,如果存在一個(gè)從S到T的函數(shù) y=f(x)滿足:(ⅰ)T={f(x)|x∈S};(ⅱ)對(duì)任意x1,x2∈S,當(dāng)x1

4、,B=N B.A={x|-1≤x≤3},B={x|x=-8或0

5、4.(2013·重慶高考理)(-6≤a≤3)的最大值為 (  ) A.9 B. C.3 D. 【解析】選B 本題考查函數(shù)的最值問題,意在考查考生的運(yùn)算求解能力. 法一:因?yàn)椋?≤a≤3,所以3-a≥0,a+6≥0,則由基本不等式可知,≤=,當(dāng)且僅當(dāng)a=-時(shí)等號(hào)成立. 法二:= ≤,當(dāng)且僅當(dāng)a=-時(shí)等號(hào)成立. 5.(2013·重慶高考理)若a

6、 ) A.(a,b) 和(b,c)內(nèi) B.(-∞,a)和(a,b)內(nèi) C.(b,c)和(c,+∞)內(nèi) D.(-∞,a) 和(c,+∞)內(nèi) 【解析】選A 本題考查函數(shù)的零點(diǎn),意在考查考生數(shù)形結(jié)合的能力.由已知易得f(a)>0,f(b)<0,f(c)>0,故函數(shù)f(x)的兩個(gè)零點(diǎn)分別位于區(qū)間(a,b)和(b,c)內(nèi). 6.(2013·新課標(biāo)Ⅰ高考理)已知函數(shù)f(x)=若|f(x)|≥ax,則a的取值范圍是

7、 (  ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0] 【解析】選D 本題考查一次函數(shù)、二次函數(shù)、對(duì)數(shù)函數(shù)、分段函數(shù)及由不等式恒成立求參數(shù)的取值范圍問題,意在考查考生的轉(zhuǎn)化能力和利用數(shù)形結(jié)合思想解答問題的能力.當(dāng)x≤0時(shí),f(x)=-x2+2x=-(x-1)2+1≤0,所以|f(x)|≥ax化簡(jiǎn)為x2-2x≥ax,即x2≥(a+2)x,因?yàn)閤≤0,所以a+2≥x恒成立,所以a≥-2;當(dāng)x>0時(shí),f(x)=ln(x+1)>0,所以|f(x)|≥ax化簡(jiǎn)為ln(x+1)>ax恒成立,由函數(shù)圖象可知a

8、≤0,綜上,當(dāng)-2≤a≤0時(shí),不等式|f(x)|≥ax恒成立,選擇D. 7.(2013·新課標(biāo)II高考理)設(shè)a=log36,b=log510,c=log714,則 (  ) A.c>b>a B.b>c>a C.a(chǎn)>c>b D.a(chǎn)>b>c 【解析】選D 本題主要考查對(duì)數(shù)的基本運(yùn)算以及同真數(shù)不同底數(shù)對(duì)數(shù)值大小的比較,意在考查考生分析問題與合理運(yùn)用知識(shí)巧妙求解問題的能力. a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,則只要比較log32,log52,log7

9、2的大小即可,在同一坐標(biāo)系中作出函數(shù)y=log3x,y=log5x,y=log7x的圖象,由三個(gè)圖象的相對(duì)位置關(guān)系,可知a>b>c,故選D. 8.(2013·新課標(biāo)II高考理)已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯(cuò)誤的是 (  ) A.? x0∈R,f(x0)=0 y=f(x)的圖象是中心對(duì)稱圖形 x0是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,x0)單調(diào)遞減 x0是f(x)的極值點(diǎn),則 f′(x0)=0 【解析】選C 本題考查三次函數(shù)的性質(zhì),考查數(shù)形結(jié)合思想,考查考生分析問題和解決問題的能力.由于三次函數(shù)的三次項(xiàng)系數(shù)為正值,當(dāng)x→-∞時(shí),函數(shù)值→-∞,當(dāng)x→

10、+∞時(shí),函數(shù)值也→+∞,又三次函數(shù)的圖象是連續(xù)不斷的,故一定穿過x軸,即一定?x0∈R,f(x0)=0,選項(xiàng)A中的結(jié)論正確;函數(shù)f(x)的解析式可以通過配方的方法化為形如(x+m)3+n(x+m)+h的形式,通過平移函數(shù)圖象,函數(shù)的解析式可以化為y=x3+nx的形式,這是一個(gè)奇函數(shù),其圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,故函數(shù)f(x)的圖象是中心對(duì)稱圖形,選項(xiàng)B中的結(jié)論正確;由于三次函數(shù)的三次項(xiàng)系數(shù)為正值,故函數(shù)如果存在極值點(diǎn)x1,x2,則極小值點(diǎn) x2>x1,即函數(shù)在-∞到極小值點(diǎn)的區(qū)間上是先遞增后遞減的,所以選項(xiàng)C中的結(jié)論錯(cuò)誤;根據(jù)導(dǎo)數(shù)與極值的關(guān)系,顯然選項(xiàng)D中的結(jié)論正確. 9.(2013·遼寧高

11、考理)已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8. 設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B= (  ) A.16 B.-16 C.a(chǎn)2-2a-16 D.a(chǎn)2+2a-16 【解析】選B 本題考查了二次函數(shù)的圖象和性質(zhì)的應(yīng)用,試題以信息的形式給出,增加了試題的難度.試題同時(shí)考查了數(shù)形結(jié)合的數(shù)學(xué)

12、思想和轉(zhuǎn)化與化歸的數(shù)學(xué)思想,解題過程中要能夠結(jié)合圖象特點(diǎn),將問題轉(zhuǎn)化為研究函數(shù)圖象交點(diǎn)問題.函數(shù)f(x)的圖象是開口向上的拋物線,g(x)的圖象是開口向下的拋物線,兩個(gè)函數(shù)圖象相交,則A必是兩個(gè)函數(shù)圖象交點(diǎn)中較低的點(diǎn)的縱坐標(biāo),B是兩個(gè)函數(shù)圖象交點(diǎn)中較高的點(diǎn)的縱坐標(biāo).令x2-2(a+2)x+a2=-x2+2(a-2)x-a2+8,解得x=a+2或x=ax=a+2時(shí),因?yàn)楹瘮?shù)f(x)的對(duì)稱軸為x=a+2,故可判斷A=f(a+2)=-4a-4,B=f(a-2)=-4a+12,所以A-B=-16. 10.(2013·遼寧高考理)設(shè)函數(shù)f(x)滿足x2f′(x)+2xf(x)=,f(2)=,則x>0時(shí)

13、,f(x)(  ) A.有極大值,無極小值 B.有極小值,無極大值 C.既有極大值又有極小值 D.既無極大值也無極小值 【解析】選D 本題考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化能力.由題意[x2f(x)]′=,令g(x)=x2f(x),則g′(x)=,且f(x)=,因此f′(x)==.令h(x)=ex-2g(x),則h′(x)=ex-2g′(x)=ex-=,所以x>2時(shí),h′(x)>0;00時(shí),f(x)是單調(diào)遞增的,f(x)既無極大值也無極小值. 11.(2013·安徽高考理)若函數(shù)f(x)=x3+ax2+bx+c有極值點(diǎn)x1

14、,x2,且f(x1)=x1,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)是 (  ) A.3 B.4 C.5 D.6 【解析】選A 本題考查三次函數(shù)、導(dǎo)數(shù)的運(yùn)算、二次方程等知識(shí),考查分類討論思想與數(shù)形結(jié)合思想. 因?yàn)閒′(x)=3x2+2ax+b,3f2(x)+2af(x)+b=0且方程3x2+2ax+b=0的兩根分別為x1,x2,所以f(x)=x1或f(x)=x2.當(dāng)x1是極大值點(diǎn)時(shí),x2為極小值點(diǎn),且x2>x1,如圖1所示可知方程f

15、(x)=x1有2個(gè)實(shí)根,f(x)=x2有1個(gè)實(shí)根,故方程3f2(x)+2af(x)+b=0共有3個(gè)不同實(shí)根. 當(dāng)x1是極小值點(diǎn)時(shí),f(x1)=x1,x2為極大值點(diǎn),且x2

16、lg(x+y)=2lg x·2lg y C.2lg x·lg y=2lg x+2lg y D.2lg(xy)=2lg x·2lg y 【解析】選D 本題考查理解有理指數(shù)冪的含義、冪的運(yùn)算,考查指數(shù)、對(duì)數(shù)函數(shù)的概念及其運(yùn)算性質(zhì),意在考查考生基本的運(yùn)算能力.取特殊值即可.如取x=10,y=1,2lg x+lg y=2,2lg(xy)=2,2lg x+2lg y=3,2lg(x+y)=2lg 11,2lg x·lg y=1,2lg x·2lg y=2. 13.(2013·浙江高考理)已知e為自然對(duì)數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex-1)(x-1)k(k=1

17、,2), 則 (  ) A.當(dāng)k=1時(shí),f(x)在x=1處取到極小值 B.當(dāng)k=1時(shí),f(x)在x=1 處取到極大值 C.當(dāng)k=2時(shí),f(x)在x=1處取到極小值 D.當(dāng)k=2時(shí),f(x)在x=1處取到極大值 【解析】選C 本題考查函數(shù)極值的概念以及兩類基本函數(shù)的性質(zhì)、單調(diào)性,函數(shù)在某點(diǎn)取得極值的必要條件和充分條件,意在考查考生數(shù)形結(jié)合及靈活運(yùn)用知識(shí)的能力.當(dāng)k=1時(shí),f(x)=(ex-1)(x-1),0,1是函數(shù)f(x)的零點(diǎn).當(dāng)0

18、<1時(shí),f(x)=(ex-1)(x-1)<0,當(dāng)x>1時(shí),f(x)=(ex-1)(x-1)>0,1不會(huì)是極值點(diǎn).當(dāng)k=2時(shí),f(x)=(ex-1)(x-1)2,零點(diǎn)還是0,1,但是當(dāng)01時(shí),f(x)>0,由極值的概念,知選C. 14.(2013·北京高考理)函數(shù)f(x)的圖象向右平移1個(gè)單位長(zhǎng)度,所得圖象與曲線y=ex關(guān)于y軸對(duì)稱,則f(x)= (  ) A.ex+1 B.ex-1 C.e-x+1 D.

19、 e-x-1 【解析】選D 本題考查函數(shù)的平移及對(duì)稱性,意在考查考生對(duì)基礎(chǔ)知識(shí)的掌握情況.與曲線y=ex關(guān)于y軸對(duì)稱的曲線為y=e-x,函數(shù)y=e-x的圖象向左平移一個(gè)單位長(zhǎng)度即可得到函數(shù)f(x)的圖象,即f(x)=e-(x+1)=e-x-1. 15.(2013·陜西高考理) 在如圖所示的銳角三角形空地中,欲建一個(gè)面積不小于300 m2的內(nèi)接矩形花園(陰影部分),則其邊長(zhǎng)x(單位:m)的取值范圍是 (  ) A.[15,20]    B.[12,25] C.[10,30]

20、 D.[20,30] 【解析】選C 本題考查三角形相似的性質(zhì),考查考生構(gòu)建函數(shù)和不等式模型,利用解不等式求解實(shí)際應(yīng)用題的能力.如圖,過A作AH⊥BC于H,交DE于F,易知====,則有AF=x,F(xiàn)H=40-x,由題意知陰影部分的面積S=x(40-x)≥300,解得10≤x≤30,即x∈[10,30]. 16.(2013·陜西高考理)設(shè)[x]表示不大于x的最大整數(shù),則對(duì)任意實(shí)數(shù)x,y有 (  ) A.[-x]=-[x]     B.[2x]=2[x] C.[x+y]≤[x]+[y]

21、 D.[x-y]≤[x]-[y] 【解析】選D 本題考查新定義問題,把握取整函數(shù)的意義,取特殊值進(jìn)行判斷即可.取特殊值進(jìn)行判斷.當(dāng)x=1.1時(shí),[-x]=-2,-[x]=-1,故A錯(cuò);當(dāng)x=1.9時(shí),[2x]=3,2[x]=2,故B錯(cuò);當(dāng)x=1.1,y=1.9時(shí),[x+y]=3,[x]+[y]=2,故C錯(cuò);由排除法知,選D. 17.(2013·江西高考理)函數(shù)y= ln(1-x)的定義域?yàn)? (  ) A.(0,1) B.[0,1) C.(0,1] D.[0,1] 【解

22、析】選B 本題考查函數(shù)的定義域,意在考查考生的運(yùn)算能力.根據(jù)題意得解得0≤x<1,即所求定義域?yàn)閇0,1). 18.(2013·江西高考理)若S1=x2dx,S2=dx,S3=exdx,則S1,S2,S3的大小關(guān)系為 (  ) A.S1

23、=ln x=ln 2

24、0.(2013·山東高考理)已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí), f(x) =x2+,則f(-1)= (  ) A.-2 B.0 C.1 D.2 【解析】選A 本題考查函數(shù)的奇偶性,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法.f(-1)=-f(1)=-2. 21.(2013·山東高考理)函數(shù)y=xcos x+sin x的圖象大致為 (  ) 【解析】選D 本題考查函數(shù)的性質(zhì)在分析判斷函數(shù)圖象中的綜合運(yùn)用,考查一般與特殊的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,

25、考查綜合運(yùn)用知識(shí)分析問題和解決問題的能力.函數(shù)是奇函數(shù),圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,當(dāng)00,而當(dāng)x=π時(shí),y=-π<0,據(jù)此排除選項(xiàng)A、B、C,正確選項(xiàng)為D. 22.(2013·大綱卷高考理)已知函數(shù)f(x)的定義域?yàn)?-1,0),則函數(shù)f(2x+1)的定義域?yàn)?  ) A.(-1,1) B. C.(-1,0) D . 【解析】選B 本題考查函數(shù)定義域問題.由-1<2x+1<0,解得-10)的反函數(shù)f-1(x)=

26、 (  ) A.(x>0) B.(x≠0) C.2x-1(x∈R) D.2x-1(x>0) 【解析】選A 本題考查反函數(shù)的概念. 由y=log2得x=,所以原函數(shù)的反函數(shù)為y=,又由原函數(shù)的定義域可得原函數(shù)中y>0,故反函數(shù)中x>0,故選A. 24.(2013·大綱卷高考理)若函數(shù)f(x)=x2+ax+在是增函數(shù),則a的取值范圍是 (  ) A.[-1,0] B.[-1,+∞)

27、 C.[0,3] D.[3,+∞) 【解析】選D 本題考查函數(shù)的單調(diào)性等知識(shí).f′(x)=2x+a-,因?yàn)楹瘮?shù)在是增函數(shù),所以f′(x)≥0在上恒成立,即a≥-2x在上恒成立,設(shè)g(x)=-2x,g′(x)=--2,令g′(x)=--2=0,得x=-1,當(dāng)x∈時(shí),g′(x)<0,故g(x)max=g=2+1=3,所以a≥3,故選D. 25.(2013·湖北高考理)一輛汽車在高速公路上行駛,由于遇到緊急情況而剎車,以速度v(t)=7-3t+(t的單位:s,v的單位:m/s)行駛至停止.在此期間汽車?yán)^續(xù)行駛的距離(單位:m)是

28、 (  ) A.1+25ln 5 B.8+25ln C.4+25ln 5 D.4+50ln 2 【解析】選C 本題考查定積分及定積分在物理中的應(yīng)用,意在考查考生的知識(shí)遷移能力.令v(t)=0,得7-3t+=0,解得t=4或t=-(舍去),所以s=v(t)d t=d t=7t-t2+25ln(1+t)=7×4-×42+25ln 5=4+25 ln 5,故選C. 26.(2013·湖北高考理)已知a為常數(shù),函數(shù)f(x)=x(ln x-ax)有兩個(gè)

29、極值點(diǎn)x1,x2(x1<x2),則 (  ) A.f(x1)>0,f(x2)>- B.f(x1)<0,f(x2)<- C.f(x1)>0,f(x2)<- D.f(x1)<0,f(x2)>- 【解析】選D 本題主要考查函數(shù)與導(dǎo)數(shù)的基礎(chǔ)知識(shí)與基本運(yùn)算,意在考查考生分析問題、處理問題的能力. ∵f(x)=x(ln x-ax), ∴f′(x)=ln x-2axf(x)=x(ln x-ax

30、)有兩個(gè)極值點(diǎn)x1,x2, ∴f′(x)=ln x-2ax+1有兩個(gè)零點(diǎn)x1,x2,即函數(shù)g(x)=ln x與函數(shù)h(x)=2ax-1有兩個(gè)交點(diǎn).∴a>0,且0

31、2) x2 (x2,+∞) f′(x) - 0 + 0 - f(x)  最小值  最大值  ∴f(x1)<0,f(x2)>f(1)=-a>-.故選D. 27.(2013·四川高考理)函數(shù)y=的圖象大致是 (  ) 【解析】選C 本題考查函數(shù)的圖象及其性質(zhì),意在考查考生對(duì)函數(shù)的定義域及值域等知識(shí)的理解與掌握.因?yàn)楹瘮?shù)的定義域是非零實(shí)數(shù)集,所以A錯(cuò);當(dāng)x<0時(shí),y>0,所以B錯(cuò);當(dāng)x→+∞時(shí),y→0,所以D錯(cuò),故選C. 28.(2013·四川高考理)設(shè)函數(shù)f(x)=(a∈R,e為自然對(duì)數(shù)的底數(shù)

32、).若曲線 y=sin x上存在點(diǎn)(x0,y0)使得f(f(y0))=y(tǒng)0,則a的取值范圍是 (  ) A.[1,e] B.[e-1-1,1] C.[1,e+1] D.[e-1-1,e+1] 【解析】選A 本題考查三角函數(shù)、指數(shù)函數(shù)、根式函數(shù)及方程的零點(diǎn)等基本知識(shí),意在考查數(shù)形結(jié)合、函數(shù)與方程、轉(zhuǎn)化與化歸等數(shù)學(xué)思想,同時(shí)考查考生的運(yùn)算能力.因?yàn)閥0=sin x0∈[-1,1],而f(x)≥0,f(f(y0))=y(tǒng)0,所以y0∈[0,1],設(shè)=x,x∈[0,1].①,所以ex+x-x2=a在x∈[0,

33、1]上有解,令g(x)=ex+x-x2,所以g′(x)=ex+1-2x,設(shè)h(x)=ex+1-2x,則h′(x)=ex-2,所以當(dāng)x∈(0,ln 2)時(shí),h′(x)<0,當(dāng)x∈(ln 2,1)時(shí),h′(x)>0,所以g′(x)≥gg(x)在[0,1]上單調(diào)遞增.所以原題中的方程有解必須方程①有解.所以g(0)≤a≤g(1).故選A. 29.(2013·天津高考理)函數(shù)f(x)=2x|logx|-1的零點(diǎn)個(gè)數(shù)為 (  ) A.1 B.2 C.3 D.4 【解析

34、】選B 本題考查函數(shù)零點(diǎn),意在考查考生的數(shù)形結(jié)合能力.函數(shù)f(x)=2x|logx|-1的零點(diǎn)個(gè)數(shù)即為函數(shù)y=|logx|與y=圖象的交點(diǎn)個(gè)數(shù).在同一直角坐標(biāo)系中作出函數(shù)y=|logx|與y=的圖象,易知有2個(gè)交點(diǎn). 30.(2013·北京高考理)下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是 (  ) A.y= B.y=e-x C.y=-x2+1 D. y=lg|x| 【解析】選C 本題主要考查一些常見函數(shù)的圖像和性質(zhì),意在考查考生對(duì)冪函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及函數(shù)圖像之間的變換關(guān)系的掌

35、握情況. y=是奇函數(shù),選項(xiàng)A錯(cuò);y=e-x是指數(shù)函數(shù),非奇非偶,選項(xiàng)B錯(cuò);y=lg |x|是偶函數(shù),但在(0,+∞)上單調(diào)遞增,選項(xiàng)D錯(cuò);只有選項(xiàng)C是偶函數(shù)且在(0,+∞)上單調(diào)遞減. 31.(2013·重慶高考文)函數(shù)y=的定義域是 (  ) A.(-∞,2) B.(2,+∞) C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞) 【解析】選C 本題主要考查函數(shù)的定義域.由題可知所以x>2且x≠3,故選C. 32.(2013·重慶高考文)已知函數(shù)f(x)=ax3+bsin x+4(a,b∈R

36、),f(lg(log2 10))=5,則 f(lg(lg 2))= (  ) A.-5 B.-1 C.3 D.4 【解析】選C 本題主要考查函數(shù)的求值、對(duì)數(shù)的運(yùn)算.因?yàn)閒(lg(log2 10))=f=f(-lg(lg 2))=5,又f(x)+f(-x)=8,所以f(-lg(lg 2))+f(lg(lg 2))=8,所以f(lg(lg 2))=3,故選C. 33.(2013·安徽高考

37、文)函數(shù)y=f(x)的圖像如圖所示,在區(qū)間[a,b]上可找到n(n≥2)個(gè)不同的數(shù)x1,x2,…,xn,使得==…=,則n的取值范圍為 (  ) A.{2,3} B.{2,3,4} C.{3,4} D.{3,4,5} 【解析】選B 本題以函數(shù)圖像為載體,考查數(shù)形結(jié)合思想,意在考查考生的創(chuàng)新意識(shí)和化歸與轉(zhuǎn)化的能力. 令==…==k,即把該問題轉(zhuǎn)化為看函數(shù)y=f(x)的圖像與直線y=kx有幾個(gè)不同的交點(diǎn),過原點(diǎn)作直線y=kx,發(fā)現(xiàn)直線y=kx與y=f(x)的圖像可能有2,3或4個(gè)不同的交點(diǎn). 3

38、4.(2013·安徽高考文)已知函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2.若f(x1)=x1

39、+b=0有兩個(gè)不等的實(shí)根x1,x2.則方程3(f(x))2+2af(x)+b=0有兩個(gè)不等的實(shí)根,即f(x)=x1或f(x)=x2,原方程根的個(gè)數(shù)就是這兩個(gè)方程f(x)=x1和f(x)=x2的不等實(shí)根的個(gè)數(shù)之和.由上述可知函數(shù)f(x)在區(qū)間(-∞,x1),(x2,+∞)上是單調(diào)遞增的,在區(qū)間(x1,x2)上是單調(diào)遞減的,又f(x1)=x10時(shí), f(x) =x2+,則f(-1)= (  ) A.2

40、 B.1 C.0 D.-2 【解析】選D 本題主要考查函數(shù)奇偶性的應(yīng)用,考查運(yùn)算求解能力和轉(zhuǎn)化思想.由f(x)為奇函數(shù)知f(-1)=-f(1)=-2. 36.(2013·山東高考文)函數(shù)f(x)= + 的定義域?yàn)? (  ) A.(-3,0] B.(-3,1] C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1] 【解析】選A 本題主要考查函數(shù)的定義域的求法,考查運(yùn)算能力.由題意得所以

41、-30,排除C. 38.(2013·大綱卷高考文)函數(shù)f(x)=log2(x>0)的反函數(shù)f-1(x)= (  ) A.(x>0) B.(x≠0) C.2x-1(x∈R) D. 2

42、x-1(x>0) 【解析】選A 本題主要考查反函數(shù)的求法.設(shè)y=log2,則2y=1+,解得x=,所以f-1(x)=(x>0). 39.(2013·大綱卷高考文)已知曲線y=x4+ax2+1在點(diǎn)(-1,a+2)處切線的斜率為8,則a= (  ) A.9 B.6 C.-9 D.-6 【解析】選D 本題主要考查導(dǎo)數(shù)的幾何意義,以及逆向思維的能力.y′=4x3+2ax,因

43、為曲線在點(diǎn)(-1,a+2)處切線的斜率為8,所以y′|x=-1=-4-2a=8,解得a=-6. 40.(2013·福建高考文)函數(shù)f(x)=ln(x2+1)的圖像大致是 (  ) 【解析】選A 本題主要考查函數(shù)圖像的奇偶性與根據(jù)特殊點(diǎn)判斷函數(shù)圖像等基礎(chǔ)知識(shí),意在考查考生的數(shù)形結(jié)合能力和運(yùn)算求解能力.依題意,得f(-x)=ln(x2+1)=f(x),所以函數(shù)f(x)為偶函數(shù),即函數(shù)f(x)的圖像關(guān)于yf(x)過定點(diǎn)(0,0),排除B,D,應(yīng)選A. 41.(2013·福建高考文)設(shè)函數(shù)f(x)的定義域?yàn)镽,x0(x0≠0)是f(x)的極大值點(diǎn),

44、以下結(jié)論一定正確的是 (  ) A.?x∈R,f(x)≤f(x0) B.-x0是f(-x)的極小值點(diǎn) C.-x0是-f(x)的極小值點(diǎn) D.-x0是-f(-x)的極小值點(diǎn) 【解析】選D 本題主要考查函數(shù)的極值點(diǎn)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),意在考查考生的數(shù)形結(jié)合能力、轉(zhuǎn)化和化歸能力、運(yùn)算求解能力.取函數(shù)f(x)=x3-x,則x=-為f(x)的極大值點(diǎn),但f(3)>f,∴排除A;取函數(shù)f(x)=-(x-1)2,則x=1是f(x)的極大值點(diǎn),但-1不是f(-x)的極小值點(diǎn),∴排除B

45、;-f(x)=(x-1)2,-1不是-f(x)的極小值點(diǎn),∴排除C,故選D. 42.(2013·浙江高考文)已知a,b,c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則 (  ) A.a(chǎn)>0,4a+b=0 B.a(chǎn)<0,4a+b=0 C.a(chǎn)>0,2a+b=0 D.a(chǎn)<0,2a+b=0 【解析】選A 本題主要考查二次函數(shù)的圖像與性質(zhì)等基礎(chǔ)知識(shí),意在考查考生的數(shù)形結(jié)合能力以及分析問題、解決問題的能力.由f(0)=f(4)得f(x)=ax2+bx+c的對(duì)稱軸為x=-=2,∴4a+

46、b=0,又f(0)>f(1),∴f(x)先減后增,于是a>0. 43.(2013·浙江高考文)已知函數(shù)y=f(x)的圖像是下列四個(gè)圖像之一,且其導(dǎo)函數(shù)y=f′(x)的圖像如圖所示,則該函數(shù)的圖像是 (  ) 【解析】選B 本題主要考查函數(shù)導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識(shí),意在考查考生基本的函數(shù)與圖像的轉(zhuǎn)化能力.由函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖像自左至右是先增后減,可知函數(shù)y=f(x)圖像的切線的斜率自左至右選增大后減小. 44.(2013·浙江高考文)設(shè)a,b∈R,定義運(yùn)算“∧”和“∨”如下: a

47、∧b=a∨b= 若正數(shù)a,b,c,d滿足ab≥4,c+d≤4,則 (  ) A.a(chǎn)∧b≥2,c∧d≤2 B.a(chǎn)∧b≥2,c∨d≥2 C.a(chǎn)∨b≥2,c∧d≤2 D.a(chǎn)∨b≥2,c∨d≥2 【解析】選C 本題主要考查考生的閱讀能力 ,轉(zhuǎn)化問題的能力,綜合利用基礎(chǔ)知識(shí)分析問題、發(fā)現(xiàn)問題和解決問題的能力.事實(shí)上本題的“∧”和“∨”運(yùn)算就是取最小值和最大值運(yùn)算,而ab≥4,則a,b中至少有一個(gè)大于或等于2,否則ab<4,∴a∨b≥2;同理c+d≤4,則c,d中至少有一個(gè)小于或等

48、于2,∴c∧d≤2. 45.(2013·新課標(biāo)Ⅰ高考文)函數(shù)f(x)=(1-cos x)sin x在[-π,π]的圖像大致為 (  ) 【解析】x∈[0,π]的情形,又當(dāng)x∈[0,π]時(shí),f(x)≥0,于是排除A.∵f(x)=(1-cos x)sin x,∴f′(x)=sin x·sin x+(1-cos x)cos x=1-cos2x+cos x-cos2x=-2cos2x+cos x+1,令f′(x)=0,則cos x=1或cos x=-,結(jié)合x∈[-π,π],求得f(x)在[0,π]上的極大值點(diǎn)為π,靠近π,可知C對(duì). 46.(2013·新課標(biāo)Ⅰ高考文)已知函數(shù)

49、f(x)=若|f(x)|≥ax,則a的取值范圍是 (  ) A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0] 【解析】選D 本題主要考查數(shù)形結(jié)合思想、函數(shù)與方程思想,利用導(dǎo)數(shù)研究函數(shù)間關(guān)系,對(duì)分析能力有較高要求.y=|f(x)|的圖像如圖所示,y=ax為過原點(diǎn)的一條直線,當(dāng)a>0時(shí),與y=|f(x)|在y軸右側(cè)總有交點(diǎn),不合題意.當(dāng)a=0時(shí)成立.當(dāng)a<0時(shí),有k≤a<0,其中k是y=

50、|-x2+2x|在原點(diǎn)處的切線斜率,顯然k=-2,于是-2≤a<0.綜上,a∈[-2,0]. 47.(2013·天津高考文)已知函數(shù)f(x)是定義在R上的偶函數(shù), 且在區(qū)間[0,+∞)上單調(diào)遞增. 若實(shí)數(shù)a滿足f(log2a)+f≤2f(1),則a的取值范圍是 (  ) A.[1,2] B. C. D.(0,2] 【解析】選C 本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,意在考查考生分析問題的能力.因?yàn)閘og a=-log2 a,且f(x)是偶函數(shù),所以f(log2 a)+f(log a)=2

51、f(log2 a)=2f(|log2 a|)≤2f(1),即f(|log2a|)≤f(1),又函數(shù)在[0,+∞)上單調(diào)遞增,所以0≤|log2 a|≤1,即-1≤log2 a≤1,解得≤a≤2. 48.(2013·天津高考文)設(shè)函數(shù)f(x)=ex+x-2,g(x)=ln x+x2a,b滿足f(a)=0,g(b)=0,則 (  ) A.g(a)<0

52、 D.f(b)0,所以f(a)=0時(shí)a∈(0,1).又g(x)=ln x+x2-3在(0,+∞)上單調(diào)遞增,且g(1)=-2<0,所以g(ag(2)=ln 2+1>0,g(b)=0得b∈(1,2),又f(1)=e-1>0,且f(x)=ex+x-2在R上單調(diào)遞增,所以f(b)>0.綜上可知,g(a)<0

53、因交通堵塞停留了一段時(shí)間,后為了趕時(shí)間加快速度行駛. 與以上事件吻合得最好的圖像是 (  ) 【解析】選C 本題主要考查函數(shù)的相關(guān)知識(shí),考查考生的識(shí)圖能力.出發(fā)時(shí)距學(xué)校最遠(yuǎn),先排除A,中途堵塞停留,距離沒變,再排除D,堵塞停留后比原來騎得快,因此排除B. 50.(2013·湖北高考文)x為實(shí)數(shù),[x]表示不超過x的最大整數(shù),則函數(shù)f(x)=x-[x]在R上為 (  ) A.奇函數(shù) B.偶函數(shù)

54、 C.增函數(shù) D.周期函數(shù) 【解析】選D 本題主要考查函數(shù)的圖像和性質(zhì).當(dāng)x∈[0,1)時(shí),畫出函數(shù)圖像(圖略),再左右擴(kuò)展知f(x)為周期函數(shù).故選D. 51.(2013·湖北高考文)已知函數(shù)f(x)=x(ln x-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍 是 (  ) A.(-∞,0) B. C.(0,1) D.(0,+∞) 【解析】選B 本題主要考查導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)極值

55、的方法,考查考生運(yùn)算能力、綜合分析問題的能力和化歸與轉(zhuǎn)化能力.由題知,x>0,f′(x)=ln x+1-2ax,由于函數(shù)f(x)有兩個(gè)極值點(diǎn),則f′(x)=0有兩個(gè)不等的正根,顯然a≤0時(shí)不合題意,必有ag(x)=ln x+1-2ax,g′(x)=-2a,令g′(x)=0,得x=,故g(x)在上單調(diào)遞增,在上單調(diào)遞減,所以g(x)在x=處取得最大值,即f′=ln>0,所以0

56、gab·logac D.loga(b+c)=logab+logac 【解析】選B 本題主要考查對(duì)數(shù)的有關(guān)運(yùn)算,考查運(yùn)算能力.利用對(duì)數(shù)的換底公式進(jìn)行驗(yàn)證,logab·logca=·logca=logcb,則B對(duì). 53.(2013·陜西高考文)設(shè)[x]表示不大于x的最大整數(shù), 則對(duì)任意實(shí)數(shù)x,有 (  ) A.[-x]=-[x] B.=[x] C.[2x]=2[x] D.[x]+=[2x] 【解析】選D 本題主要考查新定義問題的探究方法,借助取整函數(shù)的意義,取特殊值進(jìn)行判

57、斷.取特殊值進(jìn)行判斷,當(dāng)x=1.1時(shí),[-x]=-2,-[x]=-1,故A錯(cuò);當(dāng)x=-1.1時(shí),[x]=-2,=[-0.6]=-1,故B錯(cuò);當(dāng)x=1.9時(shí),[2x]=3,2[x]=2,故C錯(cuò),由排除法,選D. 54.(2013·江西高考文)如圖,已知l1⊥l2,圓心在l1上、半徑為1 m的圓O在t=0時(shí)與l2相切于點(diǎn)A,圓O沿l1以1 m/s的速度勻速向上移動(dòng),圓被直線l2所截上方圓弧長(zhǎng)記為x,令y=cos x,則y與時(shí)間t(0≤t≤1,單位:s)的函數(shù)y=f(t)的圖像大致為 (  ) 【解析】選B 本題主要考查函數(shù)建模、函數(shù)圖像的變化,考查運(yùn)動(dòng)變化的觀點(diǎn)

58、以及觀察、分析、判斷、解決問題的能力.設(shè)經(jīng)過t(0≤t≤1)秒直線l2與圓交于M,N兩點(diǎn),直線l1與圓被直線l2所截上方圓弧交于點(diǎn)E,則∠MON=x,AE=t,OA=1-t.所以cos===1-t,所以y=cos x=2cos2 -1=2(1-t)2-1=2t2-4t+1.故其對(duì)應(yīng)的圖像為B. 55.(2013·四川高考文)設(shè)函數(shù)f(x)=(a∈R,e為自然對(duì)數(shù)的底數(shù)).若存在 b∈[0,1]使f(f(b))=b成立,則a的取值范圍是 (  ) A.[1,e] B.[1,1+e] C.

59、[e,1+e] D.[0,1] 【解析】選A 本題主要考查函數(shù)的零點(diǎn)等基礎(chǔ)知識(shí),意在考查函數(shù)與方程、轉(zhuǎn)化與化歸等數(shù)學(xué)思想,同時(shí)考查考生的運(yùn)算能力.由題意得 =x,x∈[0,1]①.化簡(jiǎn)得ex+x-x2=a,x∈[0,1].令g(x)=ex+x-x2,所以g′(x)=ex+1-2x,設(shè)h(x)=ex+1-2x,則h′(x)=ex-2,所以當(dāng)x∈(0,ln 2)時(shí),h′(x)<0,當(dāng)x∈(ln 2,1)時(shí),h′(xg′(x)≥g′(ln 2)=3-2ln 2>0,所以g(x)在[0,1]上單調(diào)遞增,所以原題中的方程有解必須方程①有解,所以g(0)≤a≤g(1). 56.(

60、2013·廣東高考文)函數(shù)y=的定義域是 (  ) A.(-1,+∞) B.[-1,+∞) C.(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞) 【解析】選C 本題主要考查函數(shù)定義域知識(shí),意在考查考生的運(yùn)算求解能力.由題意得∴故選C. 57.(2013·遼寧高考文)已知函數(shù)f(x)=ln(-3x)+1,則f(lg 2)+f= (  ) A.-1 B.0 C.1 D.2 【解析】選D 本題主要考查函數(shù)的奇偶性

61、、對(duì)數(shù)的運(yùn)算、判斷兩個(gè)對(duì)數(shù)的關(guān)系,意在考查考生準(zhǔn)確找出問題切入點(diǎn)的能力,從而使計(jì)算簡(jiǎn)化.由已知,得f(-x)=ln(+3x)+1,所以f(x)+f(-x)=2.因?yàn)閘g 2,lg互為相反數(shù),所以f(lg 2)+f=2. 58.(2013·遼寧高考文)已知函數(shù)f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A-B= (  ) A.a(chǎn)2-2a-16

62、 B.a(chǎn)2+2a-16 C.-16 D.16 【解析】選C  本題是一道新定義題,考查函數(shù)的圖像性質(zhì).f(x)的圖像的頂點(diǎn)坐標(biāo)為(a+2,-4a-4),g(x)的圖像的頂點(diǎn)坐標(biāo)為(a-2,-4a+12),并且f(x)與g(x)的圖像的頂點(diǎn)都在對(duì)方的圖像上,如圖所示,所以A-B=-16. 59.(2012·重慶高考理) 設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是

63、 (  ) A.函數(shù)f(x)有極大值f(2)和極小值f(1) B.函數(shù)f(x)有極大值f(-2)和極小值f(1) C.函數(shù)f(x)有極大值f(2)和極小值f(-2) D.函數(shù)f(x)有極大值f(-2)和極小值f(2) 【解析】選D 由圖可知,當(dāng)x<-2時(shí),f′(x)>0;當(dāng)-22時(shí),f′(xx=-2處取得極大值,在x=2處取得極小值. 60.(2012·廣東高考理)下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是 (  ) A.y=ln(x+2)

64、 B.y=- C.y=()x D.y=x+ 【解析】選A 選項(xiàng)A的函數(shù)y=ln(x+2)的增區(qū)間為(-2,+∞),所以在(0,+∞)上一定是增函數(shù). 61.(2012·山東高考理)定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2;當(dāng)-1≤x<3時(shí),f(x)=x.則f(1)+f(2)+f(3)+…+f(2 012)= (  ) A.335 B.338 C.1 678 D.

65、2 012 【解析】選B 由f(x+6)=f(x)可知,函數(shù)f(x)的周期為6,所以f(-3)=f(3)=-1,f(-2)=f(4)=0,f(-1)=f(5)=-1,f(0)=f(6)=0,f(1)=1,f(2)=2,所以在一個(gè)周期內(nèi)有f(1)+f(2)+…+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f(2 012)=f(1)+f(2)+335×1=1+2+335=338. 62.(2012·山東高考理)函數(shù)y=的圖像大致為 (  ) 【解析】選D 函數(shù)為奇函數(shù),所以其圖像關(guān)于原點(diǎn)對(duì)稱,排除A;令y=

66、0得cos 6x=0,所以6x=+kπ(k∈Z),x=+π(k∈Z),函數(shù)的零點(diǎn)有無窮多個(gè),排除C;函數(shù)在y軸右側(cè)的第一個(gè)零點(diǎn)為(,0),又函數(shù)y=2x-2-x為增函數(shù),當(dāng)00,cos 6x>0,所以函數(shù)y=>0,排除B. 63.(2012·山東高考理)設(shè)函數(shù)f(x)=,g(x)=ax2+bx(a,b∈R,a≠0).若y=f(x)的圖像與y=g(x)的圖像有且僅有兩個(gè)不同的公共點(diǎn)A(x1,y1),B(x2,y2),則下列判斷正確的是 (  ) A.當(dāng)a<0時(shí),x1+x2<0,y1+y2>0 B.當(dāng)a<0時(shí),x1+x2>0,y1+y2<0 C.當(dāng)a>0時(shí),x1+x2<0,y1+y2<0 D.當(dāng)a>0時(shí),x1+x2>0,y1+y2>0 【解析】選B 不妨設(shè)a<0,在同一坐標(biāo)系中分別畫出兩個(gè)函數(shù)的圖像,如圖所示,其中點(diǎn)A(x1,y1)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)C也在函數(shù)y=的圖像上,坐標(biāo)為(-x1,-y1),而點(diǎn)B的坐標(biāo)(x2,y2)在圖像上也明顯的顯示出來.由圖可知,當(dāng)a<0時(shí),x2>-x1,所以x1+x2>0,y2<-y1,所以y1+y2<0,同理當(dāng)a

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!