《高考數(shù)學(xué) 25個(gè)必考點(diǎn) 專(zhuān)題12 數(shù)列的通項(xiàng)課件》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué) 25個(gè)必考點(diǎn) 專(zhuān)題12 數(shù)列的通項(xiàng)課件(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、數(shù)列通項(xiàng)的求法數(shù)列高考數(shù)學(xué)25個(gè)必考點(diǎn) 專(zhuān)題復(fù)習(xí)策略指導(dǎo)求求數(shù)列數(shù)列通項(xiàng)公式通項(xiàng)公式常用方法常用方法2 2、疊加法與累乘法求數(shù)列通項(xiàng)公式、疊加法與累乘法求數(shù)列通項(xiàng)公式3 3、對(duì)于含遞推關(guān)系的數(shù)列、對(duì)于含遞推關(guān)系的數(shù)列, ,構(gòu)造出新的等差或等比數(shù)列來(lái)求通項(xiàng)構(gòu)造出新的等差或等比數(shù)列來(lái)求通項(xiàng). .(1)當(dāng)當(dāng)n2時(shí),時(shí),an=SnSn1 =4n5;當(dāng)當(dāng)n=1時(shí),時(shí),a1=S1=1+k;當(dāng)當(dāng)k=0時(shí),時(shí),a1=1適合適合an=4n5, an=4n5;當(dāng)當(dāng)k0時(shí),時(shí),an=1+k不適合不適合an=4n5,例例1:已知數(shù)列:已知數(shù)列an的前的前n項(xiàng)和為項(xiàng)和為Sn,求,求an的通項(xiàng)的通項(xiàng)an. (1)Sn=2
2、n23n+k; (2) ).0(4)1(2nnnaaSan=1+k(n=1)4n5(n2). 解析解析 =2n23n+k2(n1)2+3(n1)k(2) an+1=Sn+1Sn(an+11)2(an+1)2=0,即即(an+1+an)(an+1an2)=0,an0,an+1an=2.又又a1=1,故,故an是首項(xiàng)為是首項(xiàng)為1,公差為,公差為2的等差數(shù)列,的等差數(shù)列,an=2n1.,4)1(2nnaS 解析解析 例例1:已知數(shù)列:已知數(shù)列an的前的前n項(xiàng)和為項(xiàng)和為Sn,求,求an的通項(xiàng)的通項(xiàng)an. (1)Sn=2n23n+k; (2) ).0(4)1(2nnnaaS(an+1+1)24an+1
3、(an+1)2 =0111.Sa例例1:已知數(shù)列:已知數(shù)列an的前的前n項(xiàng)和為項(xiàng)和為Sn,求,求an的通項(xiàng)的通項(xiàng)an. (1)Sn=2n23n+k; (2) ).0(4)1(2nnnaaS法二法二 12nnaS12, 21,nnnnSSS當(dāng)時(shí)11(1)(1)0nnnnSSSS10,1,naS,nSn1121.naan又適 合111.Sa21.nan1210,nnnSSS即 :2201(1)()nnSS11(2)nnSSn2121.nnaSn從 而疊加法與累乘法求數(shù)列通項(xiàng)公式疊加法與累乘法求數(shù)列通項(xiàng)公式212aa2322aa3432aa12nnnaa112nnnaa2311 2 222nna 各
4、式相加得:21nna規(guī)律總結(jié):規(guī)律總結(jié):形如形如 11,nnabaaf n12nnnaa11a 21()nnanN(2)n 111na當(dāng)時(shí),滿(mǎn)足上式。1nndaa 解析解析 解析解析Aln(n1)lnn.即:即:an 2lnn.規(guī)律總結(jié):規(guī)律總結(jié):形如形如 11,nnabaa f n11a 2121aa3232aa4343aa11nnanan23411231nnan 各式相乘:n()nannN1111nnnnannaanan(2)n 111na當(dāng)時(shí),滿(mǎn)足上式。 解析解析 構(gòu)造法求通項(xiàng)公式構(gòu)造法求通項(xiàng)公式 解析解析 得:得:c=1.an+1+1 =2(an+ 1),例例1:在數(shù)列在數(shù)列an中,中,a15,an12an1,則,則an= ;解析解析又又b1a15.變變1:在數(shù)列在數(shù)列an中,中,a15,an12an2n ,則,則an= ;變變2:在數(shù)列在數(shù)列an中,中,a15,an12an3n ,則,則an= ;解析解析又又b1a15.2n+3n解析解析總結(jié):對(duì)于含遞推關(guān)系的數(shù)列,構(gòu)造出新的等差或等比數(shù)列來(lái)求通項(xiàng).解析解析(1)a12a2(a1a2)4, a12a23a32(a1a2a3)6,證明證明(2)即即Sn2Sn12,Sn120,