《精修版數(shù)學人教B版新導學同步選修23課時訓練: 10離散型隨機變量的分布列 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《精修版數(shù)學人教B版新導學同步選修23課時訓練: 10離散型隨機變量的分布列 Word版含解析(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理精修版資料整理
課時訓練 10 離散型隨機變量的分布列
(限時:10分鐘)
1.已知隨機變量X的分布列如下表,則m的值為( )
X
1
2
3
4
5
P
m
A. B.
C. D.
答案:C
2.若離散型隨機變量X的分布列為
X
0
1
P
2a
3a
則a=( )
A. B.
C. D.
解析:由離散型隨機變量分布列的性質(zhì)可知,2a+3a=1,解得a=.
答案:C
3.一盒中有12個乒乓球,其中9個新的,3個舊的,從盒中任取3個球
2、來用,用完后裝回盒中,此時盒中舊球個數(shù)X是一個隨機變量,其分布列為P(X),則P(X=4)的值為__________.
答案:
4.隨機變量ξ的分布列如下,則ξ為奇數(shù)的概率為__________.
ξ
0
1
2
3
4
5
P
解析:P=P(ξ=1)+P(ξ=3)+P(ξ=5)=++=.
答案:
5.從某醫(yī)院的3名醫(yī)生,2名護士中隨機選派2人參加雅安抗震救災(zāi),設(shè)其中醫(yī)生的人數(shù)為X,寫出隨機變量X的分布列.
解析:依題意可知,隨機變量X服從超幾何分布,所以P(X=k)=(k=0,1,2).
P(X=0)===0.1,
P(X=1)===0
3、.6,
P(X=2)===0.3.
(或P(X=2)=1-P(X=0)-P(X=1)=1-0.1-0.6=0.3).
故隨機變量X的分布列為
X
0
1
2
P
0.1
0.6
0.3
(限時:30分鐘)
一、選擇題
1.某一隨機變量X的概率分布如表,且m+2n=1.2.則m-的值為( )
X
0
1
2
3
P
0.1
m
n
0.1
A.-0.2 B.0.2
C.0.1 D.-0.1
答案:B
2.已知隨機變量ξ的分布列為P(ξ=k)=,k=1,2,…,則P(2<ξ≤4)等于( )
A. B.
C. D.
解
4、析:P(2<ξ≤4)=P(ξ=3)+P(ξ=4)=+=.
答案:A
3.設(shè)ξ是一個離散型隨機變量,其分布列為
ξ
-1
0
1
P
1-2q
q2
則q的值為( )
A.1 B.1±
C.1+ D.1-
解析:由+(1-2q)+q2=1,即q2-2q+=0,
解得q=.又因為P(ξ=i)>0,故有1-2q>0,故q=1-.
答案:D
4.一個盒子里裝有相同大小的10個黑球,12個紅球,4個白球,從中任取2個,其中白球的個數(shù)記為X,則下列概率等于的是( )
A.P(0<X≤2) B.P(X≤1)
C.P(X=1) D.P(X=2)
5、解析:本題相當于最多取出1個白球的概率,也就是取到1個白球或沒有取到白球.
答案:B
5.在15個村莊中,有7個村莊交通不太方便,現(xiàn)從中任意選10個村莊,用ξ表示10個村莊中交通不太方便的村莊數(shù),下列概率中等于的是( )
A.P(ξ=2) B.P(ξ≤2)
C.P(ξ=4) D.P(ξ≤4)
解析:A項,P(ξ=2)=;
B項,P(ξ≤2)=P(ξ=2)≠;
C項,P(ξ=4)=;
D項,P(ξ≤4)=P(ξ=2)+P(ξ=3)+P(ξ=4)>.
答案:C
二、填空題
6.某小組有男生6人,女生4人,現(xiàn)要選3個人當班干部,則當選的3人中至少有1個女生的概率為____
6、______.
解析:設(shè)當選的3人中女生的人數(shù)為X.
則X=1,2,3.
∵P(X=1)==,P(X=2)==,
P(X=3)==.
∴P(X≥1)=P(X=1)+P(X=2)+P(X=3)
==.
答案:
7.某射手射擊一次命中環(huán)數(shù)X的分布列如下:
X
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
則此射手“射擊一次命中環(huán)數(shù)X≥7”的概率為__________.
解析:根據(jù)射手射擊一次命中環(huán)數(shù)X的分布列,有
P(X=7)=0.09,P(X=8)=0.28,
P(X=9)=0.29
7、,P(X=10)=0.22,
P(X≥7)=P(X=7)+P(X=8)+P(X=9)+P(X=10)=0.88.
答案:0.88
8.已知隨機變量ξ只能取三個值x1,x2,x3,其概率依次成等差數(shù)列,則公差d的取值范圍為__________.
解析:設(shè)ξ的分布列為
ξ
x1
x2
x3
P
a-d
a
a+d
由離散型隨機變量分布列的基本性質(zhì)知
解得-<d<.
答案:-<d<
三、解答題:每小題15分,共45分.
9.某飲料公司招聘了一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為
8、B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定為3 500元;若4杯選對3杯,則月工資定為2 800元;否則月工資定為2 100元.令X表示此人選對A飲料的杯數(shù).假設(shè)此人對A和B兩種飲料沒有鑒別能力.求X的分布列.
解析:X的可能取值為:0,1,2,3,4.
P(X=i)=(i=0,1,2,3,4).
即
X
0
1
2
3
4
P
10.以下莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.
如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總
9、棵數(shù)Y的分布列.
解析:當X=9時,由莖葉圖可知,甲組同學的植樹棵數(shù)分別是9,9,11,11;乙組同學的植樹棵數(shù)分別是9,8,9,10.分別從甲、乙兩組中隨機選取一名同學,共有4×4=16種可能的結(jié)果,這兩名同學植樹總棵數(shù)Y的可能取值為17,18,19,20,21.事件“Y=17”等價于“甲組選出的同學植樹9棵,乙組選出的同學植樹8棵”,所以該事件有2種可能的結(jié)果,因此P(Y=17)==.
同理可得P(Y=18)=;P(Y=19)=;
P(Y=20)=;P(Y=21)=.
所以隨機變量Y的分布列為
Y
17
18
19
20
21
P
11.為了解甲
10、、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
70
81
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當產(chǎn)品中的微量元素x,y滿足x≥175且y≥75時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列.
解析:(1)設(shè)乙廠生產(chǎn)的產(chǎn)品數(shù)量為m件,依題意得=,所以m=35,
答:乙廠生產(chǎn)的產(chǎn)品數(shù)量為35件.
(2)∵上述樣本數(shù)據(jù)中滿足x≥175且y≥75的只有2件,
∴估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量為35×=14件.
(3)依題意,ξ可取值0,1,2,則
P(ξ=0)==,P(ξ=1)==,
P(ξ=2)==,
所以ξ的分布列為
ξ
0
1
2
P
最新精品資料