21、過圖象可知當a∈(1,2)時,函數(shù)y=f(x)和函數(shù)y=a有三個交點,即a的取值范圍是(1,2).
12.(2019·河南鶴壁高中模擬二)已知函數(shù)f(x)=(x2-4)(ex-e-x)+x+1在區(qū)間[-3,3]的值域為[m,M],則m+M=________.
答案 2
解析 y=(x2-4)(ex-e-x)+x在[-3,3]上為奇函數(shù),圖象關于原點對稱,f(x)=(x2-4)(ex-e-x)+x+1的圖象是將上述函數(shù)圖象向上平移1個單位得到的,所以f(x)圖象關于(0,1)對稱,則m+M=2.
三、解答題
13.已知函數(shù)f(x)=x2-2ax+5(a>1).
(1)若f(x)的定義
22、域和值域是[1,a],求實數(shù)a的值;
(2)若f(x)在(-∞,2]上是減函數(shù),且對任意的x1,x2∈[1,a+1],總有|f(x1)-f(x2)|≤4,求實數(shù)a的取值范圍.
解 (1)因為f(x)=(x-a)2+5-a2(a>1),
所以f(x)在[1,a]上是減函數(shù),
又f(x)的定義域和值域均為[1,a],
所以即解得a=2.
(2)因為f(x)在(-∞,2]上是減函數(shù),所以a≥2,
又x=a∈[1,a+1],
且(a+1)-a≤(a+1)-2=a-1,
所以f(x)max=f(1)=6-2a,f(x)min=f(a)=5-a2,
因為對任意的x1,x2∈[1,a+1
23、],
總有|f(x1)-f(x2)|≤4,所以f(x)max-f(x)min≤4,
即(6-2a)-(5-a2)≤4,解得-1≤a≤3,
又a≥2,所以2≤a≤3.
綜上,實數(shù)a的取值范圍是[2,3].
14.(2019·山東淄博摸底考試)設函數(shù)f(x)=kax-a-x(a>0且a≠1)是定義域為R的奇函數(shù),且f(1)=.
(1)若f(m2+2m)+f(m-4)>0,求m的取值范圍;
(2)若g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值為-2,求m的值.
解 (1)由題意,得f(0)=0,即k-1=0,解得k=1,經檢驗滿足函數(shù)f(x)是奇函數(shù),
由f(1
24、)=,得a-a-1=,解得a=2或a=-(舍去),
所以f(x)=2x-2-x為奇函數(shù)且是R上的單調遞增函數(shù),由f(m2+2m)+f(m-4)>0,
得f(m2+2m)>f(4-m),
所以m2+2m>4-m,解得m<-4或m>1.
(2)g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2,
令t=2x-2-x,由x≥1,得t≥21-2-1=,
又y=t2-2mt+2,對稱軸t=m,
①m≥時,ymin=m2-2m2+2=-2,解得m=2(m=-2舍去);
②m<時,ymin=-3m+2=-2?m=>(舍去).
所以m=2.