《高考數(shù)學(xué)大二輪刷題首選卷理數(shù)文檔:第一部分 考點(diǎn)三 復(fù)數(shù)》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)大二輪刷題首選卷理數(shù)文檔:第一部分 考點(diǎn)三 復(fù)數(shù)(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
考點(diǎn)三 復(fù)數(shù)
一、選擇題
1.(2019·湖南衡陽(yáng)三模)已知i是虛數(shù)單位,復(fù)數(shù)i·z=1-2i,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 C
解析 ∵復(fù)數(shù)i·z=1-2i,
∴-i·i·z=-i(1-2i),z=-2-i,
則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)(-2,-1)位于第三象限.故選C.
2.(2019·山東濰坊5月三模)設(shè)復(fù)數(shù)z滿足=i,則|z|=( )
A.1 B.
C.3 D.5
答案 B
解析 ∵=i,∴z==+1=+1=1-2i,∴|z|==,故選B.
3.(2019·安徽蕪湖5月
2、模擬)設(shè)復(fù)數(shù)z滿足=i,則下列說(shuō)法正確的是( )
A.z為純虛數(shù) B.z的虛部為-i
C.=-i D.|z|=
答案 D
解析 ∵z+1=zi,∴z=--i,∴|z|=,復(fù)數(shù)z的虛部為-,=-+i,故選D.
4.(2019·全國(guó)卷Ⅰ)設(shè)復(fù)數(shù)z滿足|z-i|=1,z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(x,y),則( )
A.(x+1)2+y2=1 B.(x-1)2+y2=1
C.x2+(y-1)2=1 D.x2+(y+1)2=1
答案 C
解析 由已知條件,可得z=x+yi.
∵|z-i|=1,∴|x+yi-i|=1,
∴x2+(y-1)2=1.故選C.
5.復(fù)數(shù)z=(i為虛數(shù)單位
3、)的共軛復(fù)數(shù)是( )
A. B.
C.+i D.-i
答案 C
解析 由題意,得z====-i,∴=+i.故選C.
6.已知i為虛數(shù)單位,若復(fù)數(shù)z=+i(a∈R)的實(shí)部與虛部互為相反數(shù),則a=( )
A.-5 B.-1
C.- D.-
答案 D
解析 z=+i=+i=+i,∵復(fù)數(shù)z=+i(a∈R)的實(shí)部與虛部互為相反數(shù),
∴-=,解得a=-.故選D.
7.若復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,且z1=2+i,i為虛數(shù)單位,則z1z2=( )
A.-5 B.5
C.-4+i D.-4-i
答案 A
解析 因?yàn)閦1=2+i在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)(2,1)關(guān)
4、于虛軸(y軸)的對(duì)稱點(diǎn)為(-2,1),因此z2=-2+i,z1z2=i2-4=-5.故選A.
8.若復(fù)數(shù)z=(a+i)2(a∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在虛軸上,則|z|=( )
A.1 B.3
C.2 D.4
答案 C
解析 由z=(a+i)2=a2-1+2ai在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在虛軸上,知a2-1=0,即a=±1,所以z=±2i,故|z|=2,故選C.
二、填空題
9.若i為虛數(shù)單位,圖中網(wǎng)格紙的小正方形的邊長(zhǎng)是1,復(fù)平面內(nèi)點(diǎn)Z表示復(fù)數(shù)z,則復(fù)數(shù)的共軛復(fù)數(shù)是________.
答案?。璱
解析 復(fù)數(shù)===i,其共軛復(fù)數(shù)為-i.
10.(2019·湖北部分重點(diǎn)中學(xué)聯(lián)考)
5、=________.
答案 i
解析?。剑剑剑剑絠.
11.歐拉公式:eix=cosx+isinx(i為虛數(shù)單位),由瑞士數(shù)學(xué)家歐拉發(fā)明,它建立了三角函數(shù)與指數(shù)函數(shù)的關(guān)系,根據(jù)歐拉公式,(e)2=________.
答案 -1
解析 由eix=cosx+isinx得(e)2=2=i2=-1.
12.已知=-1+bi,其中a,b是實(shí)數(shù),則復(fù)數(shù)a-bi在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第________象限.
答案 二
解析 由=-1+bi,得a=(-1+bi)(1-i)=(b-1)+(b+1)i,∴即a=-2,b=-1,∴復(fù)數(shù)a-bi=-2+i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-2,1),位于第二
6、象限.
三、解答題
13.如圖,平行四邊形OABC,頂點(diǎn)O,A,C分別表示0,3+2i,-2+4i,試求:
(1)表示的復(fù)數(shù),表示的復(fù)數(shù);
(2)對(duì)角線表示的復(fù)數(shù).
解 (1)∵=-,
∴表示的復(fù)數(shù)為-3-2i,
∵=,∴表示的復(fù)數(shù)為-3-2i.
(2)∵=-,
∴表示的復(fù)數(shù)為(3+2i)-(-2+4i)=5-2i.
14.已知z1=cosα+isinα,z2=cosβ-isinβ,且z1-z2=+i,求cos(α+β)的值.
解 ∵z1=cosα+isinα,z2=cosβ-isinβ,
∴z1-z2=(cosα-cosβ)+i(sinα+sinβ)=+i.
∴
7、
由①2+②2,得2-2cos(α+β)=1.
∴cos(α+β)=.
一、選擇題
1.(2019·安徽合肥第三次教學(xué)質(zhì)量檢測(cè))已知i是虛數(shù)單位,復(fù)數(shù)z滿足z+z·i=3+i,則復(fù)數(shù)z的共軛復(fù)數(shù)為( )
A.1+2i B.1-2i
C.2+i D.2-i
答案 C
解析 z+z·i=3+i可化為z=,∵z====2-i.∴z的共軛復(fù)數(shù)為=2+i,故選C.
2.(2019·四川雙流中學(xué)一模)已知點(diǎn)Z1,Z2的坐標(biāo)分別為(1,0),(0,1),若向量對(duì)應(yīng)復(fù)數(shù)z,則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
答案 B
解析 因?yàn)?/p>
8、點(diǎn)Z1,Z2的坐標(biāo)分別為(1,0),(0,1),所以=(-1,1),即復(fù)數(shù)z對(duì)應(yīng)點(diǎn)位于第二象限,故選B.
3.(2019·山東棲霞高考模擬)已知復(fù)數(shù)z=(a+i)(1-i)(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線y=2x上,則實(shí)數(shù)a的值為( )
A.0 B.-1
C.1 D.-
答案 D
解析 因?yàn)閦=(a+i)(1-i)=a+1+(1-a)i,對(duì)應(yīng)的點(diǎn)為(a+1,1-a),因?yàn)辄c(diǎn)在直線y=2x上,所以1-a=2(a+1),解得a=-.故選D.
4.(2019·河南十所名校測(cè)試七)設(shè)復(fù)數(shù)z=a+i,是其共軛復(fù)數(shù),若=+i,則實(shí)數(shù)a=( )
A.4 B.3
C.2 D.1
9、答案 C
解析 ∵z=a+i,∴=a-i,又=+i,則a+i=++i,∴a=2.
5.(2019·北京昌平二模)已知復(fù)數(shù)z=-1+a(1+i)(i為虛數(shù)單位,a為實(shí)數(shù))在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限,則復(fù)數(shù)z的虛部可以是( )
A.-i B.i
C.- D.
答案 D
解析 因?yàn)閦=-1+a(1+i)=(a-1)+ai,所以即0
10、 B.p1,p4
C.p2,p3 D.p2,p4
答案 B
解析 設(shè)z=a+bi(a,b∈R),z1=a1+b1i(a1,b1∈R),z2=a2+b2i(a2,b2∈R).對(duì)于p1,若∈R,即=∈R,則b=0?z=a+bi=a∈R,所以p1為真命題.對(duì)于p2,若z2∈R,即(a+bi)2=a2+2abi-b2∈R,則ab=0.當(dāng)a=0,b≠0時(shí),z=a+bi=biR,所以p2為假命題.對(duì)于p3,若z1z2∈R,即(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(a1b2+a2b1)i∈R,則a1b2+a2b1=0.而z1=2,即a1+b1i=a2-b2i?a1=a2,b1=-b
11、2.因?yàn)閍1b2+a2b1=0a1=a2,b1=-b2,所以p3為假命題.對(duì)于p4,若z∈R,即a+bi∈R,則b=0?=a-bi=a∈R,所以p4為真命題,故選B.
7.下面四個(gè)命題中,
①?gòu)?fù)數(shù)z=a+bi(a,b∈R)的實(shí)部、虛部分別是a,b;
②復(fù)數(shù)z滿足|z+1|=|z-2i|,則z對(duì)應(yīng)的點(diǎn)構(gòu)成一條直線;
③由向量a的性質(zhì)|a|2=a2,可類比得到復(fù)數(shù)z的性質(zhì)|z|2=z2;
④i為虛數(shù)單位,則1+i+i2+…+i2020=1.
正確命題的個(gè)數(shù)是( )
A.0 B.1
C.2 D.3
答案 D
解析?、?gòu)?fù)數(shù)z=a+bi(a,b∈R)的實(shí)部為a,虛部為b,故正確;
12、②設(shè)z=a+bi(a,b∈R),由|z+1|=|z-2i|計(jì)算得2a+4b-3=0,故正確;③設(shè)z=a+bi(a,b∈R),當(dāng)b≠0時(shí),|z|2=z2不成立,故錯(cuò)誤;④1+i+i2+…+i2020=1,故正確.
8.已知復(fù)平面內(nèi),定點(diǎn)M與復(fù)數(shù)m=1+2i(i為虛數(shù)單位)對(duì)應(yīng),動(dòng)點(diǎn)P與z=x+yi對(duì)應(yīng),那么滿足|z-m|=2的點(diǎn)P的軌跡方程為( )
A.(x-1)2+(y-2)2=2 B.(x-1)2+(y-2)2=4
C.(x+1)2+(y+2)2=2 D.(x+1)2+(y+2)2=4
答案 B
解析 由題意,知在復(fù)平面內(nèi),z-m對(duì)應(yīng)的點(diǎn)為(x-1,y-2).則由|z-m|=2,
13、得=2,即(x-1)2+(y-2)2=4,故選B.
二、填空題
9.(2019·廣東韶關(guān)4月模擬)已知是z的共軛復(fù)數(shù),且滿足(1+i)=4(其中i是虛數(shù)單位),則|z|=________.
答案 2
解析 由(1+i)=4,得,===2-2i,∴|z|=||==2.
10.(2019·天津北辰模擬)用Re(z)表示復(fù)數(shù)z的實(shí)部,用Im(z)表示復(fù)數(shù)z的虛部,若已知復(fù)數(shù)z滿足(1-i)=7+3i,其中是復(fù)數(shù)z的共軛復(fù)數(shù),則Re(z)+I(xiàn)m(z)=________.
答案?。?
解析 由題意得,====2+5i,∴z=2-5i,則Re(z)+I(xiàn)m(z)=2-5=-3.
11.若2-
14、i是關(guān)于x的實(shí)系數(shù)方程x2+bx+c=0的一個(gè)復(fù)數(shù)根,則bc=________.
答案?。?0
解析 把復(fù)數(shù)根2-i代入方程中,得(2-i)2+b(2-i)+c=0,即3+2b+c-(4+b)i=0,所以解得故bc=-20.
12.定義復(fù)數(shù)的一種新運(yùn)算z1@z2=(等式右邊為普通運(yùn)算).若復(fù)數(shù)z=x+yi,i為虛數(shù)單位,且實(shí)數(shù)x,y滿足x+y=2,則@z的最小值為_(kāi)_______.
答案 2
解析 @z===|z|=.
由于x+y=2,所以@z= ,
故x=時(shí),@z取最小值2.
三、解答題
13.設(shè)虛數(shù)z滿足|2z+15|=|+10|.
(1)計(jì)算|z|的值;
(2)是否
15、存在實(shí)數(shù)a,使+∈R?若存在,求出a的值;若不存在,說(shuō)明理由.
解 (1)設(shè)z=a+bi(a,b∈R且b≠0),則=a-bi,
∵|2z+15|=|+10|,
∴|(2a+15)+2bi|=|(a+10)-bi|,
∴= ,
∴a2+b2=75,∴|z|==5.
(2)假設(shè)存在實(shí)數(shù)a,使+∈R.
設(shè)z=c+di(c,d∈R且d≠0),
則有+=+=+i+
=++i∈R,
∴-=0,
∵d≠0,∴a=±,
由(1)知 =5,∴a=±5.
14.(2019·遼寧省鞍山一中一模)設(shè)z+1為關(guān)于x的方程x2+mx+n=0,m,n∈R的虛根,i為虛數(shù)單位.
(1)當(dāng)z=-1+i時(shí),求m,n的值;
(2)若n=1,在復(fù)平面上,設(shè)復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)為P,復(fù)數(shù)2+4i所對(duì)應(yīng)的點(diǎn)為Q,試求|PQ|的取值范圍.
解 (1)因?yàn)閦=-1+i,所以z+1=i,
則i2+mi+n=0,易得
(2)設(shè)z=a+bi(a,b∈R),
則(a+1+bi)2+m(a+1+bi)+1=0,
于是
因?yàn)閎不恒為零,所以由②得m=-2(a+1),代入①得,(a+1)2+b2=1,其幾何意義是以(-1,0)為圓心,1為半徑的圓,即P是圓上任意一點(diǎn).又復(fù)數(shù)2+4i對(duì)應(yīng)的點(diǎn)為Q,所以|PQ|的最大值為+1=6,|PQ|的最小值為4.
所以|PQ|的取值范圍是[4,6].