高中數(shù)學 第一章 推理與證明 1.2 綜合法與分析法 1.2.1 綜合法課件 北師大版選修22
《高中數(shù)學 第一章 推理與證明 1.2 綜合法與分析法 1.2.1 綜合法課件 北師大版選修22》由會員分享,可在線閱讀,更多相關《高中數(shù)學 第一章 推理與證明 1.2 綜合法與分析法 1.2.1 綜合法課件 北師大版選修22(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2 2綜合法與分析法綜合法與分析法2 2.1 1綜合法MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識
2、梳理了解綜合法的思考過程,會用綜合法證明一些數(shù)學問題. MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知
3、識梳理綜合法從命題的條件出發(fā),利用定義、公理、定理及運算法則,通過演繹推理,一步一步地接近要證明的結(jié)論,直到完成命題的證明.我們把這樣的思維方法稱為綜合法.MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳
4、理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITA
5、NGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHI
6、SHISHULI知識梳理題型一題型二題型三MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題
7、型二題型三反思反思此題用綜合法證明時,可以先從條件出發(fā),也可以先從基本不等式出發(fā),通過換元、拼湊等方法構(gòu)造定值.若連續(xù)兩次或兩次以上利用基本不等式,則需要注意這幾次利用基本不等式時等號成立的條件是否相同.MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGY
8、ANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI
9、SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIA
10、NLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三【例2】如圖,正三棱柱ABC-A1B1C1的棱長均為a,D,E分別為C1C與AB的中點,A1B交AB1于點G.求證:(1)A1BAD;(2)CE平面AB1D.分析:(1)為了證明A1BAD,可證A1B平面AB1D,連接DG,顯然A1BAB1,所以證明A1BDG,可利用A1DB是等腰三角形以及點G是A1B的中點得證.(2)要證CE平面AB1D,只需證CE與平面AB1D內(nèi)的一條直線(DG)平行即可.MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN
11、隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三證明:(1)連接A1D,DG,BD.如圖,三棱柱ABC-A1B1C1是棱長均為a的正三棱柱,四邊形A1ABB1為正方形,A1B
12、AB1.D是C1C的中點,A1C1D BCD.A1D=BD.易知G為A1B的中點,A1BDG.又DGAB1=G,A1B平面AB1D.AD平面AB1D,A1BAD.MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI
13、知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三(2)連接GE, GE A1A,GE平面ABC.DC平面ABC,GEDC.ECGD.又EC平面AB1D,DG平面AB1D,EC平面AB1D.MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHU
14、LI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三【變式訓練2】 如圖,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分別是棱BC,CC1上的點(點D不同于點C),且ADDE,F為B1C1的中點.求證:(1)平面ADE平面BCC1B1;(2)直線A1F平面ADE.MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理
15、目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三證明:(1)三棱柱ABC-A1B1C1是直三棱柱,CC1平面ABC.AD平面ABC,CC1AD.又ADDE,CC1平面BCC1B1,DE平面BCC1B1,CC1DE=
16、E,AD平面BCC1B1.又AD平面ADE,平面ADE平面BCC1B1.MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHIS
17、HISHULI知識梳理題型一題型二題型三(2)A1B1=A1C1,F為B1C1的中點,A1FB1C1.CC1平面A1B1C1,且A1F平面A1B1C1,CC1A1F.又CC1平面BCC1B1,B1C1平面BCC1B1,CC1B1C1=C1,A1F平面BCC1B1.由(1)知AD平面BCC1B1,故A1FAD.又AD平面ADE,A1F平面ADE,A1F平面ADE.MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳
18、理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI
19、典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLI
20、AN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理題型一題型二題型三【變式訓練3】 已知數(shù)列an滿足a1=1,a2=3,an+2=3an+1-2an(nN+).(1)證明:數(shù)列an+1-an是等比數(shù)列;(2)求數(shù)列an的通項公式.(1)證明:因為an+2=3an+1-2an,所以an+2-an+1=2an+1-2an=2(an+1-an),所以 .又a2-a1=2,所以數(shù)列an+1-an是以2為首
21、項,2為公比的等比數(shù)列.(2)解:由(1)得an+1-an=2n(nN+).所以an=(an-an-1)+(an-1-an-2)+(a2-a1)+a1=2n-1+2n-2+2+1=2n-1(nN+).MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYAN
22、LIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理1 2 3 4 5 6A.-2B.0C.1D.2答案:CMUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANG
23、YANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理1 2 3 4 5 62已知角A,B為ABC的內(nèi)角,則“AB”是“sin Asin B”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件角A,B為ABC的內(nèi)角,sin A0,sin B0.sin Asin B2Rsin A2Rsin BabAB(其中R是ABC外接圓的半徑).答案:CMUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識
24、梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理1 2 3 4 5 6MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITO
25、UXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理1 2 3 4 5 6MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANG
26、YANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理1 2 3 4 5 65若sin +sin +sin =0,cos +cos +cos =0,則cos(-)=. 解析:因為已知條件中有三個角,而所求結(jié)論中只有兩個角,所以我們只需將已知條件中的角消去即可,依據(jù)sin2+cos2=1消去
27、.由已知,得sin =-(sin +sin ),cos =-(cos +cos ),則(sin +sin )2+(cos +cos )2=sin2+cos2=1,MUBIAODAOHANG目標導航DIANLI TOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHI SHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理目標導航DIANLITOUXI典例透析SUITANGYANLIAN隨堂演練ZHISHISHULI知識梳理1 2 3 4 5 6
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。